Пруссак Мебиус (1790–1868), ученик Гаусса, с 1815 года профессор в Лейпциге, в 1827 году обнародовал свое Барицентрическое исчисление (Бег barycentrische CalculJ и напечатал множество трудов в Журнале Крелле (Journal fur die reine und angewandte Mathematik), основанном в Берлине в 1826 году. Главной заслугой Мебиуса является исследование новых логарифмов, усовершенствование системы обозначений, употребляемых для упрощения геометрических рассуждений и вычислений. Он же первый предложил ввести в употребление новые системы координат.
Якоб Штейнер (1786–1863), родившийся в Бернском кантоне, поселившийся в Берлине и подружившийся с Крелле, издал в 1832 году свое Систематическое развитие зависимых геометрических образов друг от друга (Systematische Ent-wicklung der Abhdngigkeit geometrischer Gestalten voneinander), которое вместе с Геометрией положения Штаудта (1847) [62] Христиан фон Штаудт (1798–1867), родившийся в Вюртемберге, профессор в Эрлангене, пытался обосновать под названием «геометрии положения» науку, независимую от каких бы то ни было метрических отношений. Труд его, крайне сжатый, долгое время не вызывал к себе должного внимания. Мы поговорим о нем в следующем томе.
составляет основу синтетической геометрии в ее нынешней форме. В 1834 году для Штейнера в Берлине создали новую кафедру, которой он стяжал громкую славу. Открытия Штейнера относительно свойств кривых и поверхностей высших порядков так быстро следовали одно за другим, что он нередко помещал их без доказательств в Журнале Крелле, где они долгое время составляли проблемы для исследователей. Штейнер словно ненавидел анализ и старался привести его в такое состояние, чтобы развитие его мыслей нельзя было проследить. В некоторых случаях, по признанию Гессе, ему это удавалось. Имя Штейнера по справедливости связывается с двадцатью семью прямыми и характеристическим пентаэдром, принадлежащим к поверхностям третьего порядка.
Heэвклидовы системы: Лобачевский, Болиай.На арену научной мысли вступают славяне и венгры, дебют которых отмечен необычайной смелостью.
Как известно, Эвклид принимал без доказательств то, что в плоскости через точку можно провести только одну прямую, которая, сколько бы ее ни продолжали, не встретит другой данной прямой. Этот постулат, еще в древности бывший объектом многочисленных попыток доказательства, так и остался камнем преткновения. Но очень немногим геометрам приходила в голову мысль попробовать вывести следствия из противоположной гипотезы, по которой через данную точку можно провести, не встречая данной прямой, бесконечное множество прямых, заключенных в угле, величина которого зависела бы (по особому закону, который надлежит определить) от расстояния точки от данной прямой [63] Позднее писали об иезуите Саккери из Милана (1733) и Ламберте, который в статье, напечатанной в Лейпциге в 1786 г., пошел довольно далеко в этом направлении. Гаусс, со своей стороны, пришел к тем же результатам, что и Иоганн Болиай; именно ему принадлежит термин «неэвклидовой» геометрии.
.
Лобачевский (1793–1856), казанский профессор, изложил в 1829 году свои взгляды в очерке, а в 1836–1838 годах обнародовал свои Новые начала в геометрии с полной теорией параллельных, где он развил в ясной и точной форме гипотезу, обратную эвклидову постулату. Его сочинения, написанные по-русски, долго оставались неизвестны за границей, и краткое резюме его Воображаемой геометрии, которое он напечатал в Берлине в 1840 году, также прошло незамеченным.
Трансильванец Вольфганг Болиай (1775–1856) учился в Германии и был соучеником Гаусса. Занимая кафедру в Марош-Ва-шаргели в течение 47 лет, он составил себе репутацию сколь оригинального, столь же и скромного ученого. Главное его сочинение Tentamen (1832–1833) снабжено прибавлением в 26 страниц, озаглавленным Абсолютная наука о пространстве и принадлежащим его сыну Иоганну Болиай (1802–1860). В этом-то прибавлении и содержатся в сжатом виде ввшоды, вытекающие из отказа от эвклидовой гипотезы, развитой до своих аналитических следствий, из коих ясно видна невозможность найти какое-нибудь противоречие в результате этого отказа.
Из этих работ вытекало не только то, что постулат Эвклида недоказуем, но что он даже имеет характер гипотезы, а не необходимой a priori истины. Этому выводу большой философской важности предстояло позже быть распространенным на аксиомы, составляющие отправную точку геометрии, а вследствие этого глубоко изменить воззрения математиков на роль их науки.
Читать дальше