Ричард Фейнман - 8. Квантовая механика I

Здесь есть возможность читать онлайн «Ричард Фейнман - 8. Квантовая механика I» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

8. Квантовая механика I: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «8. Квантовая механика I»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

8. Квантовая механика I — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «8. Квантовая механика I», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

где R US ki коэффициенты принадлежащие этому преобразованию Но ясно что - фото 182

где R US ki коэффициенты, принадлежащие этому преобразо­ванию. Но ясно, что (4.9) и (4.10) должны приводить к одинако­вым амплитудам С" k , причем независимо от того, каково было то начальное состояние j, которое снабдило нас амплитудами С i . Значит, должно быть

Иными словами для любого поворота SU базиса если рассматривать его как два - фото 183

Иными словами, для любого поворота S®U базиса, если рас­сматривать его как два последовательных поворота S®Т и Т®U, можно получить матрицу поворота r us ki из матриц двух частных поворотов при помощи формулы (4.11). Если угод­но, (4.11) следует прямо из (4.1) и представляет собой лишь другую запись формулы:

Для полноты добавим еще следующее Но не думайте что это будет чтото страшно - фото 184

Для полноты добавим еще следующее. Но не думайте, что это будет что-то страшно важное; если хотите, переходите, не читая, прямо к следующему параграфу. Надо сознаться, что то, что мы сказали, не совсем верно. Мы не можем на самом деле утверждать, что (4.9) и (4.10) обязаны привести к абсолют­но одинаковым амплитудам. Одинаковыми должны оказаться только физические результаты; сами же амплитуды, могут отличаться на общий фазовый множитель типа e i d, не меняя результатов никаких расчетов, касающихся реального мира. Иначе говоря, вместо (4.11) единственное, что можно утвер­ждать,— это

где d какаято вещественная постоянная величина Смысл этого добавочного - фото 185

где d — какая-то вещественная постоянная величина. Смысл этого добавочного множителя е i d, конечно, в том, что амплиту­ды, которые мы получим, пользуясь матрицей R US , могут все отличаться на одну и ту же фазу - i d ) от амплитуд, которые получились бы из двух поворотов R UT и R TS . Но мы знаем, что если все амплитуды изменить на одинаковую фазу, то это ни на чем не скажется. Так что при желании можно этот фазовый множитель просто игнорировать. Оказывается, однако, что если определить нашу матрицу поворота особым образом, то этот фазовый множитель вообще не появится: б в (4.12) всегда будет нулем. Хотя это и не отражается на наших дальнейших рассуждениях, мы беремся это быстро доказать, пользуясь ма­тематической теоремой о детерминантах. [А если вы до сих пор мало знакомы с детерминантами, то не следите за доказатель­ством и прямо переходите к определению (4.15).)

Во-первых, следует напомнить, что (4.11) — это математи­ческое определение «произведения» двух матриц. (Просто очень удобно говорить «R US есть произведение R UT и R TS ».) Во-вторых, существует математическая теорема (которую для используемых здесь матриц 2X2 вы легко докажете), утверждающая, что детерминант «произведения» двух матриц есть произведение их детерминантов. Применив эту теорему к (4.12), получим

Мы отбрасываем нижние индексы они здесь ничего полезного нам не сообщают - фото 186

(Мы отбрасываем нижние индексы, они здесь ничего полезного нам не сообщают.) Да, слева стоит 2S! Вспомните, что мы имеем дело с матрицами 2x2; каждый член в матрице R US ki умножен на е i d , а каждый член в детерминанте (состоящий из двух мно­жителей) получается умножением на е i 2 d . Извлечем из (4.13) корень и разделим на него (4.12):

Добавочный фазовый множитель исчез Дальше оказывается что если мы хотим - фото 187

Добавочный фазовый множитель исчез.

Дальше оказывается, что если мы хотим, чтобы все наши амплитуды в любом заданном представлении были нормированы (а это, как вы помните, означает, что то у всех матриц поворота детерминанты окажутся чисто мнимыми экспонентами - фото 188

то у всех матриц поворота детерминанты окажутся чисто мни­мыми экспонентами, наподобие е i a . (Мы не будем этого дока­зывать; вы сами потом увидите, что это всегда так.) Значит, мы сможем, если захотим, выбрать все наши матрицы поворота R так, чтобы фаза их получалась однозначно, взяв Det R =1. Это будет делаться так. Пусть мы каким-то произвольным об­разом определили матрицу поворота R. Возьмем за правило «приводить» ее к «стандартной форме», определяя

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «8. Квантовая механика I»

Представляем Вашему вниманию похожие книги на «8. Квантовая механика I» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Александр Львовский - Отличная квантовая механика
Александр Львовский
Отзывы о книге «8. Квантовая механика I»

Обсуждение, отзывы о книге «8. Квантовая механика I» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x