Ричард Фейнман - 8. Квантовая механика I

Здесь есть возможность читать онлайн «Ричард Фейнман - 8. Квантовая механика I» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

8. Квантовая механика I: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «8. Квантовая механика I»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

8. Квантовая механика I — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «8. Квантовая механика I», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Мы должны объяснить, почему есть надежда найти коэф­фициенты R ji теоретически. Почти невозможно поверить, что если у частиц спин был выстроен в направлении +z, то есть хоть какой-то шанс обнаружить, что ее спин ориентирован в направлении + x или в каком-либо другом направлении. Это дей­ствительно почти невозможно. Но все же не совсем. Это на­столько невозможно, что остается лишь один путь, каким это происходит, а если этот путь один, то его уже можно найти.

Первое рассуждение можно провести так. Предположим, что, как показано на фиг. 4.2, а, прибор Т направлен вверх под уг­лом а относительно S. Пусть через S проходит только пучок (+), а через Т — только пучок (-). Мы измерили некоторую вероятность того, что частицы, выходя из S, пройдут сквозь Т. Теперь предположим, что мы делаем второе измерение при­бором, показанным на фиг. 4.2, б. Относительная ориентация S и Т одинакова, но вся система расположена в пространстве под другим углом. Мы хотим предположить, что оба опыта приведут к одному и тому же значению вероятности того, что частица в чистом состоянии относительно S окажется в некото­ром определенном состоянии относительно Т, Иными словами, мы предполагаем, что результат любого опыта такого рода оди­наков, что сама физика одинакова, как бы весь прибор ни был ориентирован в пространстве. (Вы скажете: «Это самоочевидно». Но это все же только предположение, и оно «правильно» только тогда, если так действительно бывает.) Это означает, что коэффициенты R ji зависят лишь от взаимного расположения S и Т в пространстве, а не от абсолютного их расположения. Выражаясь иначе, R ji зависит только от поворота, который переводит S в Т, потому что общим для фиг. 4.2, а и б, очевидно, является трехмерный поворот, переводящий прибор S в положе­ние прибора Т. Когда матрица преобразования R ji зави­сит, как в нашем случае, только от поворота, ее называют матрицей поворота.

Для следующего шага нужно еще немного информации. Пусть мы добавили третий прибор (назовем его U ), стоящий вслед за Т под каким-то произвольным углом (фиг. 4.3, а).

Фиг 43 Если Т открыт до отказа то б эквивалентно а Все это начинает - фото 177

Фиг. 4.3. Если Т «открыт до отказа», то б эквивалентно а.

(Все это начинает выглядеть устрашающе, но в этом-то и прелесть отвлеченного мышления: самые сверхъестественные опыты можно ставить, просто проводя новые линии!) Что же пред­ставляет собой преобразование S ® Т ® U ? Фактически нас интересует амплитуда перехода из некоторого состояния по отношению к S к некоторому другому состоянию по отношению к U, если известны преобразования от S к Т и от Т к U, Поин­тересуемся сперва опытом, в котором в Т открыты оба канала. Ответ можно получить, дважды подряд применяя (4.5). Для перехода от S -представления к T -представлению имеем

где верхние индексы TS нужны чтобы отличать это R от R UT когда мы будем - фото 178

где верхние индексы TS нужны, чтобы отличать это R от R UT , когда мы будем переходить от Т к U.

Обозначая амплитуды появления атома в базисных состоя­ниях представления U через C" k , можно связать их с T -амплитудами, применяя (4.5) еще раз; получим

Теперь можно из 46 и 47 получить преобразование от S прямо к U - фото 179

Теперь можно из (4.6) и (4.7) получить преобразование от S прямо к U. Подставляя С' j из (4.6) в (4.7), имеем

Или поскольку в R UT kj отсутствует i можно поставить суммирование по i - фото 180

Или, поскольку в R UT kj отсутствует i, можно поставить сум­мирование по i впереди и написать

Это и есть формула двойного преобразования Заметьте однако что пока пучки - фото 181

Это и есть формула двойного преобразования.

Заметьте, однако, что, пока пучки в Т не загораживаются, состояния на выходе из Т те же, что и при входе в него. Мы могли бы с равным успехом делать преобразования из S -представления прямо в представление U. Это значило бы, что прибор U по­ставлен прямо за S, как на фиг. 4.3, б. В этом случае мы бы написали

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «8. Квантовая механика I»

Представляем Вашему вниманию похожие книги на «8. Квантовая механика I» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Александр Львовский - Отличная квантовая механика
Александр Львовский
Отзывы о книге «8. Квантовая механика I»

Обсуждение, отзывы о книге «8. Квантовая механика I» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x