Ричард Фейнман - 7. Физика сплошных сред
Здесь есть возможность читать онлайн «Ричард Фейнман - 7. Физика сплошных сред» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:7. Физика сплошных сред
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 80
- 1
- 2
- 3
- 4
- 5
7. Физика сплошных сред: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «7. Физика сплошных сред»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
7. Физика сплошных сред — читать онлайн бесплатно полную книгу (весь текст) целиком
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «7. Физика сплошных сред», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
Вы видите здесь печь, которая создает поток нейтральных атомов, летящих по прямому пути через три магнита. Магнит 1 — такой же, как и на фиг. 35.2, он создает поле; с большим, скажем положительным, градиентом dB z /dz. Если атомы обладают магнитным моментом, то они будут отклоняться вниз при J z=+h/2 или вверх приJ z=-h/2 (поскольку для электронов m направлен противоположно J). Если мы будем рассматривать только те атомы, которые могут проходить через щель S 1 , то, как это показано на фиг. 35.5, возможны две траектории. Чтобы попасть в щель, атомы с J z=+h/2 должны лететь по кривой а, а атомы с J z=-h/2 — по кривой b. Атомы, вылетающие из печи в другом направлении, вообще не попадут в щель.
Магнит 2 создает однородное поле. В этой области на атомы никакие силы не действуют, поэтому они просто пролетают через нее и попадают в магнит 3. Этот магнит представляет собой копию магнита 1, но с перевернутым полем, так что у него, dB z /dz имеет отрицательный знак. Атомы с J z=+h/2 (будем говорить «со спином, направленным вверх»), которые в магните 1 отклонялись вниз, в магните 3 будут отклоняться вверх; они продолжат свой полет по траектории а и через щель S 2 попадут в детектор. Атомы с J z=-h /2 («со спином, направленным вниз») в магнитах 1 и 3 тоже будут испытывать действие противоположных сил и полетят по траектории b, которая через щель S 2 тоже приведет их в детектор.
Детектор можно сделать разными способами в зависимости от измеряемых атомов. Так, для щелочных металлов, подобных натрию, детектором может служить тонкая раскаленная вольфрамовая нить, подсоединенная к чувствительному гальванометру. Атомы натрия, оседая на этой нити, испаряются в виде ионов Na +и оставляют на ней электрон. Возникает ток, пропорциональный числу осевших в 1 сек атомов натрия.
В щели магнита 2 находится набор катушек, которые создают небольшое горизонтальное магнитное поле В'.Эти катушки питаются током, осциллирующим с переменной частотой w, так что между полюсами магнита 2 создается сильное вертикальное магнитное поле В 0и слабое осциллирующее горизонтальное магнитное поле В'.
Предположим теперь, что частота со осциллирующего поля подобрана равной w p— частоте «прецессии» атомов в поле В. Переменное поле вызовет у некоторых из пролетающих атомов переход от одного значения J z к другому. Атомы, спины которых были первоначально направлены вверх (J г=+h/2), могут перевернуться вниз (J z=-h/2). Теперь магнитный момент этих атомов перевернут, так что в магните 3 они будут чувствовать силу, направленную вниз, и полетят по траектории а', как показано на фиг. 35.5. Теперь они уже не смогут пройти через щель S 2и попасть в детектор. Точно так же некоторые из атомов, спин которых был первоначально направлен вниз
(J z=-h/2), перевернутся при прохождении через магнит 2 вверх (J z=+h/2). После этого они полетят по траектории b' и не попадут в детектор.
Если частота осциллирующего поля В'значительно отличается от w pоно не сможет вызвать переворачивания спина и атомы по своим «невозмущенным» орбитам пройдут прямо к детектору. Итак, как видите, можно найти частоту «прецессии» атомов w pв поле В 0 ,подбирая частоту со магнитного поля В', пока не получим уменьшения тока атомов, приходящих в детектор. Уменьшение тока будет происходить тогда, когда w попадет «в резонанс» с w p . График зависимости тока в детекторе от со может напоминать кривую, изображенную на фиг. 35.6.
Фиг. 35.6. Количество атомов в пучке при w=w p уменьшается.
Зная w , можно найти величину g для данного атома.
Такой резонансный эксперимент с атомными или, как их часто называют, «молекулярными» пучками представляет очень красивый и точный способ измерения магнитных свойств атомных объектов. Резонансную частоту w pможно определить с очень большой точностью, по сути дела значительно точнее, нежели мы способны измерить поле В 0 ,необходимое при нахождении g.
§ 4. Парамагнетизм
Теперь мне бы хотелось описать явление парамагнетизма вещества. Предположим, имеется вещество, в составе которого имеются атомы, обладающие постоянным магнитным моментом, например кристаллы медного купороса. В этих кристаллах содержатся ионы меди, у которых электроны на внутренних оболочках имеют суммарный момент количества движения и магнитный момент, не равные нулю. Таким образом, ионы меди будут источником постоянного магнитного момента молекул купороса. Буквально несколько слов о том, какие атомы имеют постоянный магнитный момент, а какие — нет. Любой атом, у которого число электронов нечетно, подобно натрию, например, будет иметь магнитный момент. На незаполненной оболочке натрия имеется один электрон. Этот электрон и определяет спин и магнитный момент атома. Однако обычно при образовании соединения этот дополнительный электрон на внешней оболочке спаривается с другим электроном, направление спина которого в точности противоположно, так что все моменты количества движения и магнитные моменты валентных электронов в точности компенсируют друг друга. Вот почему молекулы, вообще говоря, не обладают магнитным моментом. Конечно, если у вас есть газ атомов натрия, то там такой компенсации не происходит. Точно так же если у вас есть то, что в химии называется «свободным радикалом», т. е. объект с нечетным числом валентных электронов, то связи оказываются неполностью насыщенными и появляется ненулевой момент количества движения.
Читать дальшеИнтервал:
Закладка:
Похожие книги на «7. Физика сплошных сред»
Представляем Вашему вниманию похожие книги на «7. Физика сплошных сред» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «7. Физика сплошных сред» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.