Интересно, что к такому же заключению можно прийти и с классической точки зрения. В соответствии с классической картиной, когда мы помещаем гироскоп, обладающий магнитным моментом m, и моментом количества движения 3, во внешнее магнитное поле, гироскоп начнет прецессировать вокруг оси, параллельной этому полю (фиг. 35.3).

Фиг. 35.3. Классическая прецессия атома с магнитным моментом m и моментом количества движения J ,
Предположим, нас интересует, как можно изменить угол классического гироскопа по отношению к магнитному полю, т. е. по отношению к оси z? Магнитное поле создает момент силы относительно горизонтальной оси. На первый взгляд кажется, что такой момент силы старается выстроить магниты в направлении поля, но он вызывает только прецессию. Если же мы хотим изменить угол гироскопа по отношению к оси z, то должны приложить момент силы относительно оси z. Если мы приложим момент силы, действующий в том же направлении, что и прецессия, угол гироскопа изменится и это приведет к уменьшению компоненты Jв направлении оси z. Угол между направлением Jи осью z на фиг. 35.3 должен увеличиться. Если мы попытаемся воспрепятствовать прецессии, вектор Jбудет двигаться по направлению к вертикали.
Но каким образом к нашему прецессирующему атому можно приложить нужный момент силы? Ответ: с помощью слабого магнитного поля, направленного в сторону. На первый взгляд вам может показаться, что направление этого магнитного поля должно крутиться вместе с прецессией магнитного момента, так чтобы поле всегда было направлено к нему под прямым углом, как это показано на фиг. 35.4, а с помощью поля В'.

Фиг. 35.4. Угол прецессии атомного магнитика можно изменить двумя путями:
а — горизонтальным магнитным полем, направленным всегда под прямым углом к m ; б— осциллирующим полем.
Такое поле работает очень хорошо, однако нисколько не хуже действует и переменное горизонтальное поле. Если у нас есть горизонтальное поле В', которое всегда направлено по оси х (в положительную или отрицательную сторону) и которое осциллирует с частотой w p, тогда через каждые полпериода действующая на магнитный момент пара сил переворачивается, так что получается суммарный эффект, который почти столь же эффективен, как и вращающееся магнитное поле. С точки зрения классической физики мы бы ожидали при этом изменения компоненты магнитного момента вдоль оси z, если у нас есть очень слабое магнитное поле, осциллирующее с частотой, в точности равной w p. Разумеется, по классической физике m г должно изменяться непрерывно, но в квантовой механике z-компонента магнитного момента не может быть непрерывной. Она должна неожиданно «прыгать» от одного значения до другого. Я сравнивал следствия классической и квантовой механики, чтобы дать вам понятие о том, что может происходить классически, и как это связано с тем, что происходит на самом деле в квантовой механике. Обратите внимание, между прочим, что в обоих случаях ожидаемая резонансная частота одна и та же.
Еще одно дополнительное замечание. Из того, что мы говорили о квантовой механике, не видно, почему переходы не могут происходить при частоте 2w р . Оказывается, что в классическом случае этому совершенно нет никакого аналога, но в квантовой механике такие переходы невозможны, по крайней мере в описанном нами способе вынужденных переходов. При горизонтальном осциллирующем магнитном поле вероятность того, что частота 2w pвызовет скачок сразу на два шага, равна нулю. Все переходы, будь то переход вверх или вниз, предпочитают происходить только при частоте w р .
Вот теперь мы готовы к описанию метода Раби. Здесь мы опишем только, как этот метод измерения магнитных моментов работает в случае частиц со спином 1/ 2. Схема аппаратуры показана на фиг. 35.5.

Фиг. 35.5. Схема установки Раби в опытах с молекулярными пучками.
Читать дальше