Ричард Фейнман - 6a. Электродинамика

Здесь есть возможность читать онлайн «Ричард Фейнман - 6a. Электродинамика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

6a. Электродинамика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «6a. Электродинамика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

6a. Электродинамика — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «6a. Электродинамика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

§ 4. Неопределенность энергии поля

Прежде чем заняться некоторыми приложениями формул Пойнтинга [т. е. выражений (27.14) и (27.15)], я хотел бы заме­тить, что на самом деле мы их не «доказали». Все, что мы сде­лали,— это нашли только возможное u и возможное S. Но откуда же нам известно, что, покрутив формулами, мы не придем к дру­гому выражению для u и другому выражению для S? Новое S и новое и будут отличаться от старых, но по-прежнему будут удовлетворять уравнению (27.6). Такое вполне может случиться. Однако в формулы, которые получаются при этом, всегда входят различные производные полей (причем это всегда члены второго порядка типа второй производной или квадрата первой произ­водной). Для u и S можно фактически написать бесконечное число различных выражений, и до сих пор никто не думал над экспериментальной проверкой того, которое же из них истинное. Люди полагают, что простейшее выражение, по-видимому, и должно быть истинным, но надо сознаться, что мы так и не знаем, как же на самом деле распределена энергия в электромагнитном поле. Пойдем по тому же легчайшему пути и постулируем, что энергия поля определяется выражением (27.14). При этом вектор потока S должен задаваться уравнением (27.15).

Самое интересное то, что единого способа избавиться от неопределенности энергии поля, по-видимому, вообще нет. Иног­да утверждают, что эту проблему можно разрешить, используя теорию гравитации; при этом приводятся такие доводы. В теории гравитации источником гравитационного притяжения является вся энергия. Поэтому если нам известно, какие гравитационные силы действуют на свет, то можно правильно определить плот­ность энергии электричества. До сих пор, однако, такими тон­кими экспериментами, которые позволили бы точно определить гравитационное влияние на электромагнитное поле, никто не занимался. Впрочем, установлено, что свет при прохождении около Солнца отклоняется, поэтому мы можем говорить, что Солнце притягивает к себе свет. Во всяком случае, найденные нами выражения для электромагнитной энергии и потока всегда всеми признавались. И хотя иногда результаты, полученные с их использованием, казались странными, никто никогда не обна­ружил в них чего-то невероятного, какого-то расхождения с экспериментом. Согласимся со всеми и будем считать, что, по-видимому, здесь все в порядке.

Мне хотелось бы сделать еще одно замечание о формуле для энергий. Прежде всего формула для энергии поля в единице объема очень проста — это сумма электрической и магнитной энергий, если электрическую энергию мы определим как Е 2 , а магнитную — как В 2 . Эти выражения были найдены нами как возможные выражения для энергии при рассмотрении статиче­ских задач. Кроме него, мы нашли для энергии электростати­ческого поля и несколько других выражений, например j, которое в электростатическом случае равно интегралу от Е·Е. Однако в электродинамическом случае это равенство нарушает­ся, и нет критерия, позволяющего установить, которая из фор­мул правильна. Но теперь мы это знаем. Аналогично, мы нашли выражение для магнитной энергии, которое верно в самом общем случае.

§ 5. Примеры потоков энергии

Наша формула для вектора потока энергии S представляет нечто новое. Теперь следует посмотреть, насколько она годится в некоторых специальных случаях, а также проверить ее на том, что мы знали раньше. Первым нашим примером будет свет. В световой волне векторы Е и В направлены под прямым углом друг к другу и направлению распространения волны (фиг. 27.2). В электромагнитной волне величина В равна (1/с)Е, а поскольку они направлены под прямым углом, то величина (ЕXE) равна просто Е 2 /с. Таким образом, для света поток энергии в секунду через единичную поверхность равен

6a Электродинамика - изображение 350

(27.16)

Фиг 272 Векторы Е В и S световой волны В световой волне где EE 0 - фото 351

Фиг. 27.2. Векторы Е, В и S световой волны.

В световой волне, где E=E 0 cosw(t-х/с), средняя скорость потока энергии через единичную площадь ср, которая на­зывается «интенсивностью» света, равна среднему значению электрического поля, помноженному на e а с:

2717 Этот результат как ни странно мы уже получали в гл 31 5 - фото 352

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «6a. Электродинамика»

Представляем Вашему вниманию похожие книги на «6a. Электродинамика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «6a. Электродинамика»

Обсуждение, отзывы о книге «6a. Электродинамика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x