Ричард Фейнман - 6a. Электродинамика

Здесь есть возможность читать онлайн «Ричард Фейнман - 6a. Электродинамика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

6a. Электродинамика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «6a. Электродинамика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

6a. Электродинамика — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «6a. Электродинамика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Возьмем простейшую коаксиальную линию, состоящую из центрального проводника (пусть это будет тонкостенный полый цилиндр) и внешнего проводника — тоже тонкостенного цилин­дра, ось которого совпадает с осью внутреннего проводника (фиг. 24.1). Для начала представим себе, как примерно ведет себя эта линия при относительно низких частотах. Мы уже кое-что говорили о поведении при низких частотах, когда утверж­дали, что у двух таких проводников на каждую единицу длины приходится сколько-то там индуктивности и сколько-то емкости. И действительно, поведение любой передающей линии при низ­ких частотах можно описать, задав ее индуктивность на едини­цу длины L 0и ее емкость на единицу длины С 0. Тогда линию можно было бы рассматривать как предельный случай фильтра L—С (см. гл. 22, § 7). Можно создать такой фильтр, который будет имитировать линию, если последовательно соединить меж­ду собой маленькие элементы индуктивности L 0Ax и зашунтировать их маленькими емкостями С 0Dx; (где Dx; — элемент длины линии). Применяя к бесконечному фильтру наши прежние ре­зультаты, мы бы увидали, что вдоль линии должны распростра­няться электрические сигналы. Но поступим иначе и вместо этого изучим свойства линии, опираясь на дифференциальные уравнения.

Фие 242 Токи и напряжения в передающей линии Предположим мы наблюдаем - фото 125

Фие. 24.2. Токи и напряже­ния в передающей линии.

Предположим мы наблюдаем за происходящим в двух соседних точках передающей - фото 126

Предположим, мы наблюдаем за происходящим в двух сосед­них точках передающей линии, скажем, на расстояниях х и х+Dx от начала линии. Обозначим напряжение между провод­никами через V(x), а ток в верхнем проводнике I(х} (фиг. 24.2). Если ток в линии меняется, то индуктивность вызовет падение напряжения вдоль небольшого участка линии от х до x+Dx

Или, беря предел при Dx®0, получаем

6a Электродинамика - изображение 127

(24.1)

Изменение тока приводит к перепаду напряжения.

Теперь еще раз взгляните на рисунок Если напряжение в х меняется то должны - фото 128

Теперь еще раз взгляните на рисунок. Если напряжение в х меняется, то должны появляться заряды, которые на этом участке передаются емкости. Если взять небольшой участок ли­нии от х до x+Dx, то заряд на нем равен q = C 0DxV. Скорость изменения этого заряда равна C 0DxdV/dt, но заряд меняется только тогда, когда ток I(х), входящий в элемент, отличается от выходящего тока I(х+Dx), Обозначая разность через DI,

6a Электродинамика - изображение 129

Если перейти к пределу при Dx®0, получается

(24.2)

Так что сохранение заряда предполагает, что градиент тока про­порционален скорости изменения напряжения во времени. Уравнения (24.1) и (24.2) — это основные уравнения линии передачи. При желании их можно видоизменить так, чтобы они учитывали сопротивление проводников или утечку зарядов че­рез изоляцию между проводниками, но пока нам достаточно са­мого простого примера.

Оба уравнения передающей линии можно объединить продифференцировав первое по - фото 130

Оба уравнения передающей линии можно объединить, про­дифференцировав первое по t, а второе по x; и исключив V или I. Получится либо

(24.3)

либо 244 Мы снова узнаем волновое уравнение по х В однородной передающей - фото 131

либо

(24.4)

Мы снова узнаем волновое уравнение по х. В однородной передающей линии напряжение (и ток) распространяется вдоль линии как волна. Напряжение вдоль линии будет следовать за­кону V(x, t)=f(x-vt) или V(x, t)=g(x+vt) или их сумме. А что такое здесь v? Мы знаем, что коэффициент при d 2/dt 2— это просто 1/v 2. так что

6a Электродинамика - изображение 132

(24.5)

6a Электродинамика - изображение 133

Покажите самостоятельно, что напряжение для каждой волны в линии пропорционально току этой волны и что коэффи­циент пропорциональности — это просто характеристический импеданс z 0. Обозначив через V +и I +напряжение и ток для вол­ны, бегущей в направлении +x, вы должны будете получить

(24.6)

6a Электродинамика - изображение 134

Равным образом, для волны, бегущей в направлении -х, полу­чится

Характеристический импеданс, как мы уже видели из наших уравнений для фильтра, дается выражением

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «6a. Электродинамика»

Представляем Вашему вниманию похожие книги на «6a. Электродинамика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «6a. Электродинамика»

Обсуждение, отзывы о книге «6a. Электродинамика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x