Ричард Фейнман - 6. Электродинамика

Здесь есть возможность читать онлайн «Ричард Фейнман - 6. Электродинамика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

6. Электродинамика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «6. Электродинамика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

6. Электродинамика — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «6. Электродинамика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Для нашей прямоугольной петли можно показать, что U мехсоответствует также работе, затрачиваемой на то, чтобы внести петлю в поле. Полная сила, действующая на петлю, равна нулю лишь в однородном поле, а в неоднородном все равно останутся какие-то силы, действующие на токовую петлю. Внося петлю в поле, мы вынуждены будем пронести ее через места, где поле неоднородно, и там будет затрачена работа. Будем считать для упрощения, что петлю вносят в поле так, что ее момент направлен вдоль поля. (А в конце, уже в поле, ее можно повер­нуть как надо.)

Вообразите, что мы хотим двигать петлю в направлении x, т. е. в ту область, где поле сильнее, и что петля ориентирована так, как показано на фиг. 15.2. Мы отправимся оттуда, где поле равно нулю, и будем интегрировать силу по расстоянию по мере того, как петля входит в поле.

Фиг 152 Петлю проносят через поле В поперек него в направлении x - фото 10

Фиг. 15.2. Петлю проносят через поле В (поперек него) в направлении x.

Рассчитаем сначала работу переноса каждой стороны по отдельности а затем все - фото 11

Рассчитаем сначала работу переноса каждой стороны по отдельности, а затем все сложим (вместо того, чтобы складывать силы до интегрирования). Силы, действующие на стороны 3 и 4, направлены поперек движения, так что на эти стороны работа не тратится. Сила, действующая на сторону 2, направлена по x и равна 1bВ(x); чтобы узнать всю работу против действия магнитных сил, нужно проинтегрировать это выражение по x от некоторого значения х, где поле равно нулю, скажем, от х = -Ґ до теперешнего положения х 2 :

(15.6)

Подобно этому и работа против сил действующих на сторону 1 равна 157 - фото 12

Подобно этому, и работа против сил, действующих на сторону 1 ,равна

(15.7)

Чтобы вычислить каждый интеграл надо знать как Вх зависит от х Но ведь - фото 13

Чтобы вычислить каждый интеграл, надо знать, как В(х) зависит от х. Но ведь сторона 1 при движении рамки распо­ложена все время параллельно стороне 2 на одном и том же расстоянии от нее, так что в ее интеграл входит почти вся работа, затраченная на перемещение стороны 2. Сумма (15.6) и (15.7) на самом деле равна

(15.8)

Но попав в область где В на обеих сторонах 1 и 2 почти одинаково мы имеем - фото 14

Но, попав в область, где В на обеих сторонах 1 и 2 почти оди­наково, мы имеем право записать интеграл в виде

где В — поле в центре петли. Вся вложенная механическая энергия оказывается равной

Это согласуется с выражением для энергии 154 выбранным нами прежде - фото 15

Это согласуется с выражением для энергии (15.4), выбранным нами прежде.

Конечно тот же вывод получился бы если бы мы до интегрирования сложили все - фото 16

Конечно, тот же вывод получился бы, если бы мы до инте­грирования сложили все силы, действующие на петлю. Если бы мы обозначили через В 1 поле у стороны 1 а через В 2 — поле у стороны 2, то вся сила, действующая в направлении х, оказа­лась бы равной

Если петля «узкая», т. е. если В 2 и В 1 не очень различаются между собой, то можно было бы написать

6 Электродинамика - изображение 17

6 Электродинамика - изображение 18

Так что сила была бы равна

(15.10)

Вся работа произведенная внешними силами над петлей равнялась бы а это - фото 19

Вся работа, произведенная внешними силами над петлей, рав­нялась бы

а это опять mB Но теперь нам становится понятно почему получается что - фото 20

а это опять - mB. Но теперь нам становится понятно, почему получается, что сила, действующая на небольшую токовую петлю, пропорциональна производной магнитного поля, как это следовало ожидать из

Другой наш результат состоит в следующем. Хоть и не исклю­чено, что не все виды энергии вошли в формулу U мех= m·B (ведь это просто некоторая имитация энергии), ею все же можно пользоваться, применяя принцип виртуальной работы, чтобы узнать, какие силы действуют на петли с постоянным током.

§ 2. Механическая и электрическая энергии

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «6. Электродинамика»

Представляем Вашему вниманию похожие книги на «6. Электродинамика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «6. Электродинамика»

Обсуждение, отзывы о книге «6. Электродинамика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x