Ричард Фейнман - 4. Кинетика. Теплота. Звук

Здесь есть возможность читать онлайн «Ричард Фейнман - 4. Кинетика. Теплота. Звук» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

4. Кинетика. Теплота. Звук: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «4. Кинетика. Теплота. Звук»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

4. Кинетика. Теплота. Звук — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «4. Кинетика. Теплота. Звук», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Но предположим, что мы столкнулись с более сложной молекулой, которая может вращаться и колебаться, и пред­положим (в классической механике это так), что энергии внут­ренних движений также пропорциональны kT. Поэтому при заданной температуре молекула, кроме кинетической энергии kT, имеет внутреннюю энергию колебания и вращения. Тогда полная энергия U включает не только кинетическую энергию, но и вра­щательную энергию и мы получаем другие значения у. Наилуч­ший способ измерения g это измерение удельной теплоемкости, характеризующей изменение энергии при изменении темпера­туры. К этому способу мы еще вернемся, а пока предполо­жим, что нам удалось экспериментально определить g с по­мощью кривой PV g , соответствующей адиабатическому сжатию.

Попробуем вычислить g для ряда частных случаев. Прежде всего для одноатомных газов полная энергия U есть не что иное, как кинетическая энергия, и в этом случае, как мы уже знаем, g равно 5/ 3. В качестве примера двухатомных газов рассмотрим кислород, водород, пары иода и т. д. и предположим, что двух­атомный газ можно представить как собрание пар атомов, меж­ду которыми действуют силы, похожие на те, что изображены на фиг. 40.3. Можно также предположить, и оказывается, что это вполне законно, что при температурах; обычных для диатомных газов, пары атомов стремятся удалиться друг от друга на расстояние r 0(расстояние минимума потенциальной энергии). Если бы это было не так, и вероятность не очень сильно за­висела от удаления от равновесной конфигурации, то мы обна­ружили бы, что кислород есть смесь сравнимых количеств O 2и одиночных атомов кислорода. А мы знаем, что в кислороде при­сутствует очень мало одиночных атомов кислорода, а это озна­чает, что глубина потенциальной ямы значительно больше kT, и это как раз мы и предполагали. Но раз атомы, составляющие молекулу, прочно закреплены на расстоянии r 0, то нам понадо­бится лишь часть потенциальной кривой вблизи минимума, которую в этом случае можно приближенно заменить параболой. Параболический потенциал соответствует гармоническому ос­циллятору, и, в самом деле, отличной моделью молекулы кисло­рода могут служить два соединенных пружинкой атома.

Но чему же равна полная энергия молекулы при температу­ре Т? Мы знаем, что кинетическая энергия каждого из атомов равна 3/ 2 kT, так что кинетическая энергия обоих атомов равна 3 / 2 kT + 3 / 2 kT. Можно распределить эту энергию иначе: тогда те же самые 3/ 2плюс 3/ 2будут выглядеть как кинетическая энергия центра масс ( 3/ 2), кинетическая энергия вращения ( 2/ 2) и кинетическая энергия колебаний ( 1/ 2). Известно, что на долю кинетической энергии колебаний приходится 1/ 2, потому что это одномерное движение, а каждой степени свободы соответствует l / 2 kT. Обращаясь к вращениям, мы можем вы­делить две оси вращения, что соответствует двум независимым движениям. Мы представляем себе атомы в виде точек, которые не могут вращаться вокруг соединяющей их линии. Но на всякий случай запомним о таком предположении, потому что если мы упремся где-то в тупик, то, может быть, здесь обна­ружится корень зла. Нас должен интересовать еще и другой вопрос: чему равна потенциальная энергия колебаний, вели­ка ли она? Средняя потенциальная энергия гармонического осциллятора равна средней кинетической энергии, т.е. также l / 2 kT. Полная энергия молекулы U = 7 / 2 kT, или kT= 2 / 7 U на атом. Это означает, что g равно 9/ 7, а не 5/ 3, т. е. g=1,286. Можно сравнить эти числа с действительно измеренными значениями g, приведенными в табл. 40.1. Взгляните сначала на гелий; это одноатомный газ, и значение g очень близко к 5/ 3; отклонение от этого значения, вероятно, есть просто след­ствие экспериментальных неточностей, хотя при столь низких температурах между атомами могут появиться силы взаимодей­ствия. Криптон и аргон — еще два одноатомных газа — также дают согласующиеся значения в пределах ошибки эксперимента.

Таблица 401 ИЗМЕРЕННЫЕ ЗНАЧЕНИЯ g ДЛЯ РАЗЛИЧНЫХ ГАЗОВ Перейдем к двухатомным - фото 25

Таблица 40.1 · ИЗМЕРЕННЫЕ ЗНАЧЕНИЯ g ДЛЯ РАЗЛИЧНЫХ ГАЗОВ

Перейдем к двухатомным газам. Тут же обнаружится, что значение g для водорода, равное 1,404, не согласуется с теоре­тическим значением 1,286. Очень близкое значение дает и кисло­род, 1,399, но с теоретическим это снова не согласуется. Для йодистого водорода g равно просто 1,40. Начинает казаться, что мы нашли общий закон: для двухатомных молекул g равно 1,40. Но нет, поглядите дальше. Для брома мы получаем 1,32, а для иода 1,30. Поскольку 1,30 довольно близко к 1,286, то можно считать, что экспериментальное значение g для иода согласуется с теоретическим, а кислород представляет собой исключение. Это уже неприятно. То, что верно для одной молекулы, неверно для другой, и нам, по-видимому, надо про­явить хитроумие, чтобы объяснить это.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «4. Кинетика. Теплота. Звук»

Представляем Вашему вниманию похожие книги на «4. Кинетика. Теплота. Звук» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «4. Кинетика. Теплота. Звук»

Обсуждение, отзывы о книге «4. Кинетика. Теплота. Звук» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x