Ричард Фейнман - 2a. Пространство. Время. Движение

Здесь есть возможность читать онлайн «Ричард Фейнман - 2a. Пространство. Время. Движение» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

2a. Пространство. Время. Движение: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «2a. Пространство. Время. Движение»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

2a. Пространство. Время. Движение — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «2a. Пространство. Время. Движение», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фиг 231 Комплексное число изображенное точкой на комплексной плоскости - фото 16

Фиг. 23,1. Комплексное число, изображенное точкой на «комплек­сной плоскости».

Итак, комп­лексное число можно представить двумя спо­собами: явно выделить его действительную и мнимую части или задать его модулем r и фазо­вым углом q. Если заданы r и q, то х и у равны rcosq и rsinq, и, наоборот, исходя из числа x+iy, можно найти r=Ц(x 2 +y 2 ) и угол q; tgq равен у/х (т. е. отношению мнимой и действи­тельной частей).

Чтобы применить комплексные числа к ре­шению физических задач, проделаем такой трюк. Когда мы изучали осциллятор, то имели дело с внешней силой, пропорциональной coswt. Такую силу F=F 0 cos w t можно рас­сматривать как действительную часть комп­лексного числа F = F 0exp(iwt), потому что exp(iwt)=coswt+isinwt. Такой переход удобен: ведь иметь дело с экспонентой легче, чем с косинусом. Итак, трюк состоит в том, что все относящиеся к осциллятору функции рассматриваются как действительные части каких-то комплексных функций. Найденное нами ком­плексное число F, разумеется, не настоящая сила, ибо физика не знает комплексных сил: все силы имеют только действитель­ную часть, а мнимой части взяться просто неоткуда. Тем не менее мы будем говорить «сила» F 0 exp(iwt), хотя надо помнить, что речь идет лишь о действительной ее части.

Рассмотрим еще один пример. Как представить косинусоидальную волну, фаза которой сдвинулась на D? Конечно, как действительную часть F 0 exp[i((wt-D 2)]; экспоненту в этом слу­чае можно записать в виде exp[i( w t- D )]=ехр(i w t)exp( -i D ). Алгебра экспонент гораздо легче алгебры синусов и косинусов; вот почему удобно использовать комплексные числа. Часто мы будем писать так:

2a Пространство Время Движение - изображение 17

2a Пространство Время Движение - изображение 18

Шляпка над буквой будет указывать, что мы имеем дело с комп­лексным числом, т. е.

Однако пора начать решать уравнения используя комплексные числа тогда мы - фото 19

Однако пора начать решать уравнения, используя комплексные числа, тогда мы увидим, как надо применять комплексные чи­сла в реальных обстоятельствах. Для начала попытаемся решить уравнение

где F действующая на осциллятор сила а х его смещение Хотя это и - фото 20

где F — действующая на осциллятор сила, а х — его смещение. Хотя это и абсурдно, предположим, что х и F — комплексные числа. Тогда х состоит из действительной части и умноженной на i мнимой части; то же самое касается и F. Уравнение (23.2) в этом случае означает

или Комплексные числа равны когда равны их действительные и мнимые части - фото 21

или

Комплексные числа равны, когда равны их действительные и мнимые части; следовательно, действительная, часть х удовлет­воряет уравнению, в правой части которого стоит действительная часть силы. Оговорим с самого начала, что такое разделение действительных и мнимых частей возможно не всегда, а только в случае линейных уравнений, т. е. уравнений, содержащих х лишь в нулевой и первой степенях. Например, если бы уравне­ние содержало член l х 2 , то, сделав подстановку x r +ix t , мы полу­чили бы l (x r +ix i ) 2 , и выделение действительной и мнимой час­тей привело бы нас к l 2 r -x 2 i) и 2ilx rx i. Итак, мы видим, что действительная часть уравнения содержит в этом случае член -l x 2 i . Мы получили совсем не то уравнение, какое собирались решать.

Попытаемся применить наш метод к уже решенной задаче о вынужденных колебаниях осциллятора, т. е. об осцилля­торе, на который действует внешняя сила. Как и раньше, мы хотим решить уравнение (23.2), но давайте начнем с уравнения

где комплексное число Конечно х тоже комплексное число но запомним - фото 22

где картинка 23— комплексное число. Конечно, х — тоже комп­лексное число, но запомним правило: чтобы найти интересую­щие нас величины, надо взять действительную часть х. Найдем решение (23.3), описывающее вынужденные колебания. О дру­гих решениях поговорим потом. Это решение имеет ту же час­тоту, что и внешняя (приложенная) сила. Колебание, кроме того, характеризуется амплитудой и фазой, поэтому если пред­ставить смещение числом картинка 24 , то модуль его скажет нам о размахе колебаний, а фаза комплексного числа — о временной задержке колебания. Воспользуемся теперь замечательным свойством экс­поненты: Дифференцируя экспоненциальную функцию мы опускаем вниз экспоненту делая ее - фото 25

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «2a. Пространство. Время. Движение»

Представляем Вашему вниманию похожие книги на «2a. Пространство. Время. Движение» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «2a. Пространство. Время. Движение»

Обсуждение, отзывы о книге «2a. Пространство. Время. Движение» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x