Александр Филиппов - Многоликий солитон

Здесь есть возможность читать онлайн «Александр Филиппов - Многоликий солитон» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1990, ISBN: 1990, Издательство: Наука, гл. ред. физ.-мат. лит., Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Многоликий солитон: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Многоликий солитон»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Одно из наиболее удивительных и красивых волновых явлений — образование уединенных волн, или солитонов, распространяющихся в виде импульсов неизменной формы и во многом подобных частицам. К солитонным явлениям относятся, например, волны цунами, нервные импульсы и др.
В новом издании (1-е изд. — 1985 г.) материал книги существенно переработан с учетом новейших достижений.
Для школьников старших классов, студентов, преподавателей.

Многоликий солитон — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Многоликий солитон», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Язык фазовых диаграмм и фазовых траекторий — очень современный, и систематически применять его начали сравнительно недавно. Закон сохранения энергии применялся значительно раньше. В особенно ясной форме это сделал знаменитый немецкий математик Карл Вейерштрасс (1815—1897) *). Он рассматривал выражение для энергии (4.3) как дифференциальное уравнение для функции φ(t) и выражал его решения с помощью так называемых эллиптических функций, теории которых он, после Абеля и Якоби, придал законченный современный вид. Обобщения этой глубокой математической теории и сегодня применяются математиками и физиками для решения сложных нелинейных уравнений и играют очень важную роль в математической теории солитонов. Мы с сожалением должны пройти мимо этих прекрасных зданий, построенных математиками. Для описания их конструкций требуется слишком сложный математический язык. К счастью, основные свойства движений маятника и других не очень сложных систем можно описать на более простом и наглядном языке фазовых диаграмм и фазовых траекторий.

*) См. о нем в книге: Замечательные ученые. — М.: Наука, 1980. — Библиотечка «Квант», вып. 9, в очерке о Софье Васильевне Ковалевской, талант которой он высоко ценил.

Впервые для этих целей его применил в 1885 г. французский математик, преподаватель Политехнической школы **) в Париже Анри Леоте (1847—1916). Он в основном занимался различными проблемами механики и использовал фазовые диаграммы для изучения работы некоторых автоматических регуляторов. Леоте не пытался создать какую-либо общую математическую теорию, и его подход к фазовым диаграммам был, скорее, физическим. Он не знал, что за три года до этого были уже заложены основы более общей математической теории. В 1882 г. 28-летний французский математик Анри Пуанкаре (1854—1912) начал публиковать серию работ под названием «О кривых, определяемых дифференциальными уравнениями», в которых он разработал качественный и геометрический подход к изучению решений дифференциальных уравнений.

Этот подход радикально отличался от принятых в то время представлений о том - фото 75

Этот подход радикально отличался от принятых в то время представлений о том, что значит решить дифференциальное уравнение. Сам Пуанкаре это очень ясно понимал: «Итак, необходимо изучать функции, определенные дифференциальными уравнениями, сами по себе, не пытаясь сводить их к более простым функциям. Полное изучение функций состоит из двух частей: 1) качественной (так сказать), или геометрического изучения кривой, определенной функцией; 2) количественной, или вычисления значений функций... Так же для изучения алгебраической кривой начинают с того, что строят эту кривую, как говорят в курсах элементарной математики, т. е. находят, какие ветви кривой замкнуты, какие бесконечны и т. д. После этого качественного изучения кривой можно найти некоторое число отдельных точек.

**) Самое знаменитое высшее учебное заведение Франции того времени. В Политехнической школе учились Ампер, Араго, Френель, Пуассон, Коши и другие известные ученые, в том числе Леоте и Пуанкаре.

Естественно, что именно с качественной стороны должна начинаться теория всякой функции, и вот почему в первую очередь возникает следующая задача: построить кривые, определяемые дифференциальным уравнением. Это качественное изучение; когда оно будет проделано полностью, то принесет самую большую пользу численному анализу функций... Впрочем, это качественное изучение и само по себе будет иметь первостепенный интерес. Различные и чрезвычайно важные вопросы анализа и механики могут быть сведены к нему».

В наше время такие взгляды кажутся совершенно естественными, почти сами собой разумеющимися. Однако сто лет назад эти идеи выглядели слишком необычными и не могли быть сразу усвоены и признаны. Мешало этому усвоению также и сильное отклонение интуитивных, геометрических рассуждений Пуанкаре от принятых тогда канонов математической строгости доказательств — многие утверждения не были доказаны, а некоторые, как выяснилось впоследствии, оказались ошибочными. Тем не менее по мере того, как росла слава Пуанкаре, которого по праву считают величайшим французским математиком второй половины прошлого века *), его труды и идеи привлекали все большее внимание. Лет через двадцать-тридцать (!) начали появляться исследования, в которых качественная теория Пуанкаре получила развитие и строгое обоснование. Развитие этой теории продолжается и в наше время, и в любой книге, посвященной нелинейным дифференциальным уравнениям или нелинейным колебаниям, можно найти многократное упоминание его имени и ссылки на его работы.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Многоликий солитон»

Представляем Вашему вниманию похожие книги на «Многоликий солитон» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Александр Штейнберг - Многоликий король. Юл Бриннер
Александр Штейнберг
Александр Филиппов - Аномальная зона
Александр Филиппов
Александр Филиппов - Вся политика. Хрестоматия
Александр Филиппов
Александр Филиппов - Когда сверкает молния
Александр Филиппов
libcat.ru: книга без обложки
Александр Филиппов
Александр Филиппов - 25 лет. Лирика, песни и сказки
Александр Филиппов
Александр Филиппов - Сказка без чудес. Роман
Александр Филиппов
Александр Филиппов - Избранный
Александр Филиппов
Отзывы о книге «Многоликий солитон»

Обсуждение, отзывы о книге «Многоликий солитон» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x