Нарисуем зависимость потенциальной энергии грузика U (φ) от его положения. В формуле (4.4) потенциальную энергию представляет слагаемое φ 2, а кинетическую Т — слагаемое (φ') 2/ω 0 2. На графике удобнее откладывать отношения U/Е 0, Т/Е 0, Е/Е 0.
Отложим по горизонтальной оси отрезок ОА , длина которого равна φ( t ), а в направлении вертикальной оси отложим отрезок ( АА 2) = Е/Е 0, причем ( АА 1) = U/Е 0, ( А 1 А 2) = Т/Е 0(рис. 4.7, б). Так как полная энергия постоянна, то точка А 2при изменении t будет двигаться по прямолинейному отрезку А 2 М , а точка А' — по параболе ( U (φ) /Е 0) = φ 2. На энергетической диаграмме видно, как перераспределяется полная энергия между кинетической и потенциальной составляющими при различных значениях φ и как амплитуда связана с полной энергией. Если нарисовать над энергетической диаграммой график φ( t ) (рис. 4.7, α), то можно наглядно увидеть зависимость кинетической и потенциальной энергии от времени. Когда маятник движется из нижнего положения к крайнему правому, где φ = φ M, изображающая точка А 2движется направо до точки М, а затем возвращается налево. Как при этом меняются кинетическая и потенциальная энергия, видно достаточно ясно, но скорость определять не очень удобно (нужно вычислять квадратный корень из длины отрезка А 1А 2). Чтобы следить также и за положением и скоростью грузика, удобно представить движение еще одним способом.
Нарисуем под нашими двумя диаграммами еще одну, на которой по оси абсцисс по-прежнему будем откладывать значения φ, а по оси ординат отложим значения φ'/ω 0в тот же момент времени (рис. 4.7, в). Тогда при движении грузика точка А 3будет описывать окружность с радиусом, равным φ M=
. Это видно из уравнения (4.4), так как (ОА) = φ( t ) и (АА 3) = φ'( t )/ω 0. В случае простого гармонического колебания (ОА) = φ Msin(ω 0t), (АА 3) = φ Mcos(ω 0 t ), и ясно, что точка А 3вращается по окружности равномерно.
В этом месте внимательный, но нетерпеливый читатель воскликнет: «Но ведь это же очевидно! С этого начиналось описание гармонического колебания. Более того, мы вернулись просто к определению тригонометрических функций. Всем известно, что если точка равномерно движется по окружности единичного радиуса с угловой скоростью ω 0, то ее проекции на прямые, проходящие через центр, определяют тригонометрические функции. В данном случае сразу ясно, что (ОА) = φ Msin(ω 0t)».
Все это, конечно, верно. Но дело в том, что нарисовать зависимость скорости φ' от положения φ можно, не только не решая уравнения маятника, но даже и забыв о его существовании . Достаточно знать закон сохранения энергии и выражение для энергии через координату и скорость, а это можно сделать не только для малых качаний маятника и не только для маятника! Пользуясь диаграммой зависимости скорости от положения, можно, наоборот, приближенно найти, как меняется положение точки со временем.
Диаграмму, на которой изображена зависимость скорости от координаты при различных значениях энергии, называют фазовой диаграммой . «Фаза» здесь означает состояние частицы, определяемое ее координатой и скоростью.
По фазовой диаграмме можно приближенно найти и график движения. Читателю полезно обдумать, как это сделать.
Математика — тоже язык!
Приписывается Дж. У. Гиббсу
Язык для всех равно чужой,
И внятный каждому...
Ф. Тютчев
Основная ценность всего этого длинного, не самого простого и не самого красивого способа решения задачи о малых колебаниях маятника состоит, конечно, в том, что этим же способом можно изучить любые колебания. При этом на новом языке «большие» (нелинейные) колебания выглядят ненамного сложнее малых. Иными словами, новый язык лучше приспособлен для решения сложных задач, и его нужно изучать. Свободное владение языком означает, что при чтении вам не нужно переводить с него на родной. Поначалу этого достичь нелегко, и приходится заниматься переводом. С течением времени, попрактиковавшись в применениях этого языка, вы вдруг замечаете, что начинаете на нем думать, и необходимость в переводе возникает все реже и реже.
Чем же отличается новый язык от обычного? Главное, разумеется, не в том, что мы изобразили движение другим способом, а в том, что мы сумели совсем по-новому подойти к проблеме. Действительно, нарисовать фазовую диаграмму можно, не решая никаких дифференциальных уравнений. Изобразив на одном и том же графике в плоскости (φ, φ'/ω 0) кривые, соответствующие разным значениям энергии, легко сразу находить максимальные значения отклонения маятника и его скорости. Нетрудно также составить общее представление о характере движения с данной энергией. Чтобы понять, как движется маятник, вовсе не нужно знать его точное положение в любой момент времени, гораздо важнее знать общий характер его движений, который и дается фазовой диаграммой. К тому же любое конкретное движение можно восстановить по известной зависимости φ' от φ при данной энергии, которая называется фазовой траекторией . Нетрудно указать приближенный способ восстановления обычной траектории по фазовой траектории, но соответствующее вычисление можно сделать сколь угодно точным, затратив соответственно большее время. Для ЭВМ решение любой такой конкретной задачи вообще не проблема.
Читать дальше