Если почитать про вакуум в учебнике физики для аспирантов, выяснится, что это гораздо более сложная штука, чем эфир Максвелла. Вакуум лоренц-инвариантен , а это означает, что, двигаясь сквозь него, заметить его невозможно; вакуумного «ветра» не существует. Вакуум содержит энергию. Он может быть поляризован, то есть реагирует на электрическое поле разделением своих «виртуальных» зарядов. Поляризацию можно выявить и измерить, посмотрев на энергетические уровни в атоме водорода (посредством явления, известного как лэмбовский сдвиг [231]); можно также зарегистрировать ее непосредственно по силе, с которой вакуум воздействует на металлические пластины (эффект Казимира [232]). В настоящее время считается, что вакуум постоянно порождает вещество и антивещество, которые почти мгновенно аннигилируют – за исключением случая, когда все это происходит вблизи черной дыры. Эта особенность приобрела существенное значение в теории излучения черной дыры Стивена Хокинга (излучение Хокинга), представляющей собой эвристическое объяснение излучения. Согласно этой теории, сильное гравитационное поле вблизи поверхности Шварцшильда разделяет возникающие там фоновые пары частиц и античастиц прежде, чем они успеют аннигилировать; одну из частиц пары оно всасывает внутрь черной дыры, вторую излучает в бесконечность.
Современная концепция вакуума рассматривает его как материальный объект. Он не движется (по крайней мере, обнаружить это невозможно), но может расширяться, и это весьма важно для понимания Большого взрыва. Вакуум содержит постоянное поле Хиггса; оно заполняет все пространство целиком и отвечает за придание частицам их массы. Он содержит также темную энергию, ответственную за ускорение расширения Вселенной. В общем, вакуум устроен намного сложнее, чем придуманный Максвеллом набор колес и шестеренок.
Фейнман обращает время вспять
На то, чтобы вырасти из идеи Дирака о бесконечном море и отказаться от нее, потребовалось 17 лет. Возможно, это могло произойти и раньше, но вмешалась ужасная война и отвлекла героя обратного времени – Ричарда Фейнмана. Он участвовал в реализации Манхэттенского проекта, наблюдал взрыв первой атомной бомбы, а затем вернулся к занятиям фундаментальной физикой в Принстоне, где читал лекции перед умнейшими людьми и демонстрировал им, что излучение не показывает асимметрии времени. Фейнман был великим энциклопедистом и ученым, сумевшим осветить буквально каждую проблему физики, о которой когда-либо задумывался. А задумывался он о многих аспектах, от электромагнетизма до физики элементарных частиц, сверхпроводимости и статистической физики.
В уравнениях Дирака – мало того, во всех уравнениях квантовой физики – слагаемое, связанное с энергией, всегда содержит также и время и выглядит как произведение Et . Позитроны Дирака имели это слагаемое со знаком минус: − Et . (Такая комбинация возникла вследствие работы Эмми Нётер, о которой мы говорили в главе 3.) Дирак интерпретировал знак минус как символ присутствия отрицательной энергии. Фейнман же предположил, что уравнения вместо этого могут указывать на положительную энергию в сочетании с отрицательным временем. Время, движущееся вспять, возможно, звучит нелепо, но задумайтесь сами: правда ли это более нелепо, чем бесконечное море электронов с отрицательной энергией?
Фейнман не был первым, рассмотревшим обратное время, но именно он превратил его в подробно разработанную теорию. Он предположил, что на самом деле позитрон – это электрон, движущийся назад во времени. Такое определение сразу же объясняло, почему он обладает той же массой, что и электрон; это и есть электрон, и он обладает положительной энергией. На самом деле электроны здесь сохранили свой отрицательный заряд; просто движение назад во времени придавало бы им иллюзию положительного электрического заряда. Бесконечного моря отрицательной энергии больше не требовалось; отрицательный знак перекочевал от энергии к времени.
Фейнман разработал совершенно новый подход к квантовой физике, и в первую очередь физике полей – тех самых силовых линий, которые выходят из зарядов и магнитов. Фейнман нашел систему уравнений, которые можно было бы использовать для расчета всех квантовых процессов в электромагнетизме, – а затем вдруг понял кое-что еще более поразительное. Каждое из его уравнений можно было изобразить в виде простой диаграммы. И оказалось, что можно, получив новую вычислительную задачу, не разбираться в сложных уравнениях, а нарисовать вместо этого все диаграммы, которые только придут на ум в рамках сформулированных Фейнманом правил, а затем, пользуясь еще одним набором правил, записать соответствующие уравнения – и получить ответ, то есть квантово-физическую амплитуду вероятности будущего процесса (обычно это столкновение частиц). Результат оказался необычайно простым и эффектным, и Фейнман даже предположил, что диаграммы здесь, возможно, более фундаментальны, чем их описание.
Читать дальше
Конец ознакомительного отрывка
Купить книгу