Ричард Мюллер - Сейчас. Физика времени

Здесь есть возможность читать онлайн «Ричард Мюллер - Сейчас. Физика времени» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент МИФ без БК, Жанр: Физика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Сейчас. Физика времени: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Сейчас. Физика времени»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Ричард Мюллер, профессор Калифорнийского университета в Беркли, собирает все достижения современной физики и предлагает нам сложить из них пазл. Он рассказывает об открытиях Эйнштейна, о черных дырах, в которых, возможно, сосредоточена большая часть энтропии Вселенной, делится последними новостями из квантовой физики, а также исследует три модели движения времени.
Книга будет интересна студентам и преподавателям, а также всем, кто интересуется физикой и концепцией времени и хочет расширить свой кругозор.
На русском языке публикуется впервые.

Сейчас. Физика времени — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Сейчас. Физика времени», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Сегодня мы знаем, что антиэлектроны Дирака тогда действительно уже наблюдались – но рожденные под воздействием высокоэнергетических космических лучей, а не лабораторных гамма-лучей (в этом Дирак был прав). Космические лучи – это естественное излучение, наблюдаемое на поверхности Земли и приходящее из космоса (этот факт продемонстрировал физик Виктор Гесс [229]еще в 1910-е годы). Эти первозданные космические лучи, взаимодействуя с атмосферой Земли, порождают антиэлектроны и другие античастицы. В 1927-м, за год до публикации Дираком первоначальной теории электрона, русский ученый Дмитрий Скобельцын [230]в экспериментах, нацеленных на исследование космических лучей, наблюдал, скорее всего, именно позитроны. Однако у него не было способа ни измерить заряд (определить, положительный он или отрицательный), ни наблюдать процесс аннигиляции, так что он не мог отличить вещество от антивещества.

В 1929 году, тоже до предсказания Дираком антиэлектрона, физик Чжунъяо Чжао, работавший в Калифорнийском технологическом институте в соседнем кабинете с Карлом Андерсоном, наблюдал странный эффект при поглощении веществом электронов, порожденных космическими лучами (по крайней мере, физик считал, что это были они). Электроны вели себя не так, как ожидалось. После появления теории Дирака Андерсон верно решил, что разницу в поведении частиц можно было бы объяснить, предположив присутствие здесь же антиэлектронов. Такая интерпретация вдохновила его на создание совершенной камеры Вильсона с сильным магнитным полем и свинцовым барьером, который позволял определить направление движения частицы (поскольку при пролете сквозь свинец она заметно теряла энергию).

Андерсон совершил открытие и опубликовал свой снимок. Ему удалось всех убедить в существовании антивещества. Дирак был прав. Редакторы журнала предложили Андерсону назвать обнаруженные им частицы позитронами , и название закрепилось.

Мой наставник Луис Альварес был знаком с Андерсоном и очень ценил его работу. Он рассказал об одном моменте, который тревожил ученого и о котором, кажется, никто раньше не писал. В 1930-е годы среди студентов и молодых ученых в большой моде были всевозможные розыгрыши. Сам Альварес тоже гордился кое-какими ловкими трюками, которые ему в свое время удалось проделать с другими физиками, и особенно с надменными профессорами. Поэтому Андерсон, вооруженный первым снимком антиэлектрона, страшно боялся, что кто-то его просто разыграл. Шутнику достаточно было вставить дополнительное зеркало перед автоматизированной камерой Андерсона, и траектория электрона на снимке загнулась бы в противоположную сторону. Так что Андерсон снова тщательно проверил фото и даже сравнил его на всякий случай с внешним видом аппарата, чтобы убедиться, что снимок настоящий. В итоге все же опубликовал его – и вошел в историю.

В 1933 году Дирак получил Нобелевскую премию за то, что тогда называли теорией электронов и позитронов. В своей нобелевской лекции он объяснил, что, собственно, сделал, но ни разу не упомянул ни Вейля, ни Оппенгеймера, ни Андерсона.

Возрожденный эфир

После Эйнштейна и до Дирака вакуум рассматривался как пустое пространство. Эйнштейн показал, что движение по отношению к абсолютному пространству необнаружимо, так что нет смысла и говорить о строении того, чего нет. Казалось, эфир тихо умер и пропал из лексикона физиков. Вакуум – это отсутствие чего бы то ни было; как число нуль, он не существует. Затем Дирак объявил, что вакуум до отказа набит электронами с отрицательной энергией. Получалось, что в нем не только присутствуют какие-то составные части; он к тому же обладает бесконечным отрицательным зарядом и бесконечной же отрицательной энергией.

Несмотря на обнаружившуюся вдруг структуру вакуума, измерить движение сквозь него по-прежнему было невозможно. Теория Дирака была выстроена в рамках математического аппарата, связанного с теорией относительности Эйнштейна, и движение по отношению к заполненному до отказа морю электронов с отрицательной энергией оказывалось необнаружимым. В определенном смысле возродился старый добрый эфир. Более того, возможно, именно это бесконечное море обеспечивало среду, колебания которой обусловливали распространение света. Электромагнитные волны были аналогичны океанским, только двигались не по воде, а по бесконечному морю электронов с отрицательной энергией.

На курсе электромагнетизма в Колумбийском университете меня учили, что эфира не существует, что была доказана ненужность и бессмысленность этой концепции, после чего ученые от нее отказались. Но позже, в аспирантуре Калифорнийского университета в Беркли мой профессор Эйвинд Вихман (тот самый, кто предложил использовать в эксперименте Фридмана−Клаузера кальций) отмечал с улыбкой, что эфир никогда и никуда не уходил из физики; его просто переименовали. Сегодня мы называем его вакуумом .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Сейчас. Физика времени»

Представляем Вашему вниманию похожие книги на «Сейчас. Физика времени» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Сейчас. Физика времени»

Обсуждение, отзывы о книге «Сейчас. Физика времени» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x