И вот, примерно в 600 году до н. э., произошло поразительное событие – не только в истории математики, но вообще в сфере понимания человечеством окружающего мира. Пифагорейцы открыли, что √2 не может быть записан как отношение целых чисел. В результате они назвали это число иррациональным . Не рациональным. Сумасшествие.
Все это может показаться загадочной стороной математики, но подумайте об этом хорошенько. Как вообще можно быть уверенным, что ваше утверждение истинно? В конце концов, нет ничего сверхъестественного в √2: это всего лишь длина гипотенузы в прямоугольном треугольнике с длинами катетов, равными 1. Из физических измерений этой фигуры нельзя заключить, что число будет иррациональным. Вы никогда не перепробуете всех возможных комбинаций целых чисел. Предположим, я скажу, что √2 равен результату деления числа 1 607 521 на 1 136 689. На самом деле это не так, но очень близко. Попробуйте сами: произведите эту операцию на калькуляторе, а потом возведите результат в квадрат. Или используйте таблицу.
Открыв иррациональный характер √2, пифагорейцы сделали важный шаг к признанию реальности ненаучного знания. Я привожу доказательство иррациональности √2 в Приложении 3. Это не очень трудно – можете убедиться сами. Позже мы поговорим подробнее о квадратном корне из 2, а сейчас давайте продолжим наше исследование значения термина мнимый .
Квадратный корень из 2 может быть представлен по крайней мере графически. Как я уже говорил, это длина гипотенузы в прямоугольном треугольнике с катетами, равными 1. Однако соотношение между длиной окружности и ее диаметром, которое мы называем в честь Пифагора числом π, нельзя представить графически. Получается, оно еще более странное, чем √2. Мы называем его трансцендентным , используя то же слово, которым обозначаем трансцендентальные медитации [78].
Одним из удивительных фактов, касающихся иррациональности √2 (показывающих, насколько это действительно экстраординарное явление), можно считать то, что оно было открыто всего один раз за историю цивилизации. Все другие утверждения по поводу этого числа в конечном счете возвращаются к работам древнегреческих математиков.
А что тогда можно сказать о √−1? Это не целое число, не рациональное и не иррациональное. Оно также не трансцендентное. Означает ли это, что его не существует? Нет, определенным образом оно существует, но только в такой степени, в которой реально существуют и другие числа. Они служат инструментами, которые мы используем для вычислений. Если такой инструмент (будь то 0, или −7, или √2) полезен, пользуйтесь им. Если √−1 нет в списке странных нецелых чисел, это не означает, что его не существует. По моему мнению и по мнению физиков и математиков, это число так же реально, как и 1.
Главная проблема с мнимыми числами скрыта в самом их названии. Если бы √−1 называлось «расширенным» вместо «мнимого», возможно, оно не создавало бы таких мучений для многих поколений студентов. Или, может быть, следовало назвать его «числом Е» по имени великого математика Леонарда Эйлера [79], который показал нам, что е π√−1+ 1 = 0. Ричард Фейнман называл эту формулу «самой замечательной в математике». Она связывает пять важнейших чисел – е (основание натурального логарифма, математическую константу), π, √−1, 1 и 0 – совершенно неожиданным способом, который оказывается чрезвычайно ценным и для электротехники, и для квантовой физики. Замечательно, что Эйлер впервые использовал для обозначения основания натурального логарифма букву е , которая в честь ученого называется числом Эйлера.
Вернемся к мнимому времени. Часы не могут показать √−1, на них нанесены только целые числа, по которым двигаются малая и большая стрелки. Как может время быть мнимым и даже расширенным?
Ответ состоит в том, что формулы Минковского представляют время вещественными числами – часами, минутами и секундами. Мнимо именно абстрактное пространство-время , постулированное Минковским. Время остается реальным, но координата в пространстве-времени оказывается вещественным числом t , помноженным на мнимое число √−1. Тем не менее когда физики говорят о конструкции Минковского – четырехмерном пространстве-времени , они рассматривают координату it в качестве мнимого времени.
Мнимое время и четырехмерное пространство-время
Самым важным вкладом Минковского в релятивистскую теорию считается не формулирование мнимого времени, а предложение концепции пространственно-временного континуума . Он показал, что уравнения, используемые в теории относительности для расчета координат местоположения и времени события, в новой системе отсчета могут быть представлены как повороты в пространстве-времени. Физики-теоретики нашли эту идею очень интересной. Вместо работы только с уравнениями теперь они могли представлять себе релятивистскую теорию в картинках. Да, эти картинки должны быть четырехмерными, и некоторые физики были способны вообразить их. Но большинство постарались облегчить дело и оперировать лишь одним пространственным измерением (как та линия, по которой в парадоксе близнецов Мэри двигалась от Земли к звезде) и одним временным измерением. В таком случае пространственно-временная диаграмма может быть изображена на плоском листе бумаги, а изменение системы координат при переходе из одной системы отсчета в другую предполагало всего лишь поворот созданной диаграммы вокруг своей оси.
Читать дальше
Конец ознакомительного отрывка
Купить книгу