Фокус с плоским тором можно проделать и с релятивистским пространством-временем, если воспользоваться упрощенной двумерной версией теории относительности Минковского. И бесконечная плоскость Минковского, и квадрат на этой плоскости с отождествленными противоположными сторонами представляют собой плоские варианты пространства-времени. Но топологически один из них — это плоскость, а другой — тор. Проделав ту же операцию с кубом, можно получить плоский трехмерный тор той же размерности, что и пространство.
Аналогичные конструкции возможны в эллиптических и гиперболических пространствах. Берется кусок пространства подходящей формы, его края склеиваются попарно — и получается многообразие той же метрики, но другой топологии. Многие из этих многообразий компактны, то есть имеют конечный размер, как сфера или тор. К концу XIX века математики открыли несколько конечных пространств постоянной кривизны. В 1900 году Шварцшильд привлек к их работе внимание космологов, определенно ссылаясь на трехмерный тор. Александр Фридман проделал то же самое для пространств отрицательной кривизны в 1924 году. В отличие от евклидова и гиперболического пространства эллиптическое пространство конечно, но тот же фокус можно проделать и там; получатся пространства постоянной положительной кривизны с разными топологиями. Тем не менее на протяжении 60 лет после 1930 года в астрономических текстах повторялся один и тот же миф о том, что существует всего три разновидности пространства постоянной кривизны — классические неевклидовы геометрии. Поэтому астрономы работали с этим ограниченным набором вариантов пространства-времени и были ошибочно уверены, что иных не существует.
Космологи, охотившиеся на более крупную дичь, обратили свои взоры к началу Вселенной, рассмотрели три классические геометрии постоянной кривизны и определили метрику Большого взрыва, рассказ о которой мы продолжим в следующей главе. Это стало таким откровением, что на долгое время форма пространства перестала представлять насущный вопрос. Все «знали», что это сфера, потому что такова простейшая метрика для Большого взрыва. Однако в пользу такой формы почти нет наблюдательных данных.
Древние цивилизации считали Землю плоской, и, хотя они ошибались, у них были данные в пользу такой гипотезы: на взгляд человека, Земля действительно выглядела плоской. Если сегодня говорить о Вселенной, то мы знаем даже меньше, чем они знали о Земле. Но в воздухе носятся идеи, способные в принципе ослабить наше невежество.
* * *
Если не сфера, то что?
В 2003 году специализированный аппарат NASA для изучения анизотропии микроволнового фона, названный после запуска именем Дэвида Уилкинсона (WMAP, Wilkinson Microwave Anisotropy Probe), занимался тем, что измерял пронизывающее все вокруг радиоизлучение, известное как реликтовое излучение, или космическое микроволновое фоновое излучение; полученные им результаты показаны на первом рисунке следующей главы. Статистический анализ флуктуаций интенсивности излучения, приходящего с разных направлений, помогает понять, как вещество в новорожденной Вселенной собиралось в сгустки. До запуска WMAP большинство космологов считало, что Вселенная бесконечна и, следовательно, должна допускать произвольно большие флуктуации. Но данные WMAP показали, что существует предел размера флуктуаций, что указывает на конечность Вселенной. Как выразился журнал Nature , «в ванне не увидишь прибоя».
Американский математик Джеффри Уикс проанализировал статистику этих флуктуаций для многообразий с различными топологиями. Один из возможных вариантов дал результат, очень близкий к реальным данным, — и средства массовой информации поспешили объявить, что Вселенная имеет форму футбольного мяча (обычного, для европейского футбола). Это была неизбежная метафора для фигуры, которая восходила к работам Пуанкаре — пространства в форме додекаэдра. В начале XXI века футбольные мячи сшивались или склеивались из 12 пятиугольников и 20 шестиугольников, образующих то, что математики называют усеченным икосаэдром, то есть икосаэдр со срезанными углами. Икосаэдр — это правильный многогранник с 20 треугольными гранями, сходящимися по пять в каждой вершине. Додекаэдр, у которого имеется 12 пятиугольных граней, появляется на сцене потому, что центры граней икосаэдра образуют додекаэдр, так что оба многогранника обладают одинаковыми симметриями. Конечно, «футбольный мяч» больше нравится средствам массовой информации, хотя технически не является правильным.
Читать дальше