Другое дело — глобальная, или общая, форма. У цилиндра не такие геодезические линии, как у плоскости. Все геодезические линии плоскости представляют собой прямые, которые уходят в бесконечность и никогда не замыкаются. На цилиндре некоторые геодезические линии могут быть замкнутыми, они обходят цилиндр вокруг и возвращаются в ту же начальную точку. Представьте себе резинку, которой можно обхватить свернутую в рулон газету. Эта резиновая полоска образует замкнутую геодезическую кривую. Такого рода глобальная разница в форме относится к общей топологии — к тому, как кусочки поверхности складываются вместе. А метрика говорит нам только о кусочках.
Древние цивилизации находились, по существу, в положении того муравья. Люди тогда не могли подняться в воздух на воздушном шаре или аэроплане, чтобы увидеть сверху форму Земли. Но они могли провести измерения и попробовать вывести из них размеры и топологию. У них, в отличие от муравья, были и кое-какие внешние помощники: Солнце, Луна и звезды. Но когда речь заходит о форме всей Вселенной, мы оказываемся в точности в положении муравья. Чтобы определить форму Вселенной изнутри, нам приходится использовать аналогии с геометрическими упражнениями муравья.
С точки зрения муравья, поверхность имеет два измерения. Это значит, что для составления карты любого участка местности достаточно двух координат. Если не брать во внимание небольшие изменения высоты, земным навигаторам достаточно только широты и долготы, чтобы узнать, где они находятся на земной поверхности. У Гаусса был блестящий ученик по имени Бернхард Риман, и он — с подачи наставника — решил обобщить формулу Гаусса для кривизны на «поверхности» с произвольным числом измерений. Поскольку на самом деле это уже не поверхности, для их обозначения Риману потребовался новый термин, и он выбрал немецкое слово Mannigfaltigkeit , что переводится как «многообразие» в смысле множества координат.
Другие математики, среди них несколько итальянцев, заразились многомерными поверхностями и создали новую область математики: дифференциальную геометрию. Именно им принадлежит большая часть базовых идей о многомерных поверхностях. Но все эти идеи они рассматривали с чисто математической точки зрения. Никто не подозревал, что дифференциальная геометрия может быть применима к реальному пространству.
* * *
Вдохновленный своим успехом с общей теорией относительности, Эйнштейн обратил внимание на главный ингредиент, которого по-прежнему недоставало, — гравитацию. Он работал над этой проблемой несколько лет, прежде чем до него дошло, что ключ к ней лежит в геометрии Римана. Он приложил немало усилий, чтобы разобраться в этой области математики (в этом ему помог Марсель Гроссман, математик и друг, ставший также проводником и наставником).
Эйнштейн понял, что ему нужен неортодоксальный вариант Римановой геометрии. Теория относительности допускает некоторое смешение пространства и времени, несмотря на то что эти две концепции играют разные роли. В традиционном Римановом многообразии метрика определяется с использованием квадратного корня из выражения, которое принимает только положительные значения. Как в теореме Пифагора, формула метрики представляет собой (обобщенно и локально) сумму квадратов. В специальной теории относительности, в аналогичной формуле задействовано вычитание квадрата времени. Эйнштейн вынужден был допустить отрицательные слагаемые в метрике; в результате получилось то, что мы сегодня называем псевдоримановым многообразием. Конечным результатом героических усилий Эйнштейна стали уравнения поля, связывающие кривизну пространства-времени с распределением вещества. Вещество искривляет пространство-время; искривленное пространство изменяет геометрию геодезических кривых, по которым движется вещество.
Закон всемирного тяготения Ньютона не описывает движение тел непосредственно. Это уравнение, решения которого позволяют получить это описание. Аналогично уравнения Эйнштейна не описывают форму Вселенной непосредственно. Их для этого необходимо решить. Но это нелинейные уравнения с десятью переменными, так что сделать это непросто.
Римановы многообразия мы в какой-то степени способны понять интуитивно, но псевдоримановы многообразия — это настоящая головоломка, если не работаешь с ними регулярно. Одно полезное упрощение позволяет мне говорить без потери смысла о форме пространства — то есть о Римановом многообразии, а не о более скользкой концепции формы пространства-времени , которая выражается псевдоримановым многообразием.
Читать дальше