Ричард Фейнман - Том 1. Механика, излучение и теплота

Здесь есть возможность читать онлайн «Ричард Фейнман - Том 1. Механика, излучение и теплота» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 1. Механика, излучение и теплота: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 1. Механика, излучение и теплота»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Том 1. Механика, излучение и теплота — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 1. Механика, излучение и теплота», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Величина эффективного сопротивления γ, определяющая сопротивление осциллятора, может быть найдена из соотношения 1/ Q =γ/ω 0; вспомним, что именно γ определяет ширину резонансной кривой (см. фиг. 23.2 [24] Выпуск 2 ). Итак, мы вычислили ширины спектральных линий для свободно излучающих атомов! Из равенства λ=2πc/ω получаем

3213 4 Независимые источники Прежде чем перейти ко второй теме - фото 838(32.13)

§ 4. Независимые источники

Прежде чем перейти ко второй теме этой главы — рассеянию света, обсудим частный случай явления интерференции, который мы до сих пор не рассматривали. Речь пойдет о таком случае, когда интерференция не возникает. Пусть имеются два источника S 1и S 2с амплитудами поля A 1и A 2. Излучение регистрируется в некоторой точке, в которую оба луча приходят с фазами φ 1и φ 2(фазы зависят от истинного момента излучения и времени запаздывания, являющегося функцией точки наблюдения).

Наблюдаемая интенсивность излучения получается сложением двух комплексных векторов с модулями A 1и A 2и фазами φ 1и φ 2(как в гл. 30) и возведением в квадрат; таким образом, энергия пропорциональна

3214 Если бы не было перекрестного члена 2A 1A 2cosφ 1φ 2 полная - фото 839(32.14)

Если бы не было перекрестного члена 2A 1A 2cos(φ 1-φ 2), полная энергия в данном направлении была бы равна сумме энергий A 1 2+A 2 2излучаемых по отдельности каждым источником, что соответствует нашим обычным представлениям. Иначе говоря, интенсивность света, падающего на предмет от двух источников, совпала бы с суммой интенсивностей обоих источников. С другой стороны, если оставить перекрестный член, суммы интенсивностей не получится, потому что возникнет интерференция. В тех случаях, когда перекрестный член роли не играет, интерференция, казалось бы, отсутствует. Фактически же она возникает всегда, но подчас ее не удается наблюдать.

Приведем несколько примеров. Пусть два источника находятся друг от друга на расстоянии 7 000 000 000 длин волн, что в общем вполне осуществимо. Тогда в некотором фиксированном направлении разность фаз принимает вполне определенное значение. Но если сдвинуться от этого направления хоть на волосок, скажем на несколько длин волн (совсем пустячное расстояние: зрачок нашего глаза настолько велик, что действие лучей можно усреднять на расстояниях, много больших длины волны), то разность фаз станет другой и значение косинуса резко изменится. При вычислении средней интенсивности в маленькой области пространства косинус в точках этой области будет все время колебаться — плюс, минус, плюс, минус — и при усреднении даст нуль.

Итак, усреднение по области, в которой фаза быстро меняется от точки к точке, обращает интерференционный член в нуль.

Другой пример. Предположим, что два источника колеблются и излучают радиоволны независимо друг от друга, т. е. они представляют собой не один осциллятор, питающийся от двух проводов (благодаря чему разность фаз остается постоянной), а именно два независимых источника. И пусть источники не настроены точно на одну и ту же частоту (равенства частот очень трудно достигнуть, если не соединять источники в одной цепи). Именно при этих условиях мы и будем называть источники независимыми. Естественно, что из-за сдвига по частоте фазы источников будут различаться, даже если вначале они и совпадали: одна из фаз начнет опережать другую и очень скоро источники окажутся в противофазе, а при дальнейшем опережении фазы снова сравняются и т. д. Разность фаз источников будет, таким образом, дрейфовать со временем, но при измерениях в течение больших промежутков времени приборы не смогут уследить за ними, так как подъемы и спады интенсивности, похожие на «биения» звука, происходят слишком быстро. Мы должны усреднить по промежутку времени наблюдения, но при этом интерференционный член снова выпадает.

Другими словами, при усреднении по разности фаз интерференционный член обращается в нуль!

Имеется много книг по физике, в которых утверждается, что два различных источника света никогда не интерферируют. Это утверждение не отражает физического закона, а просто характеризует ту чувствительность экспериментальной техники, которая существовала к моменту написания книги. В источнике же света происходит следующее: сначала излучает один атом, затем другой и т. д. Как мы показали выше, атомы излучают последовательность волн за время около 10 -8сек; через 10 -8сек какой-то атом высвечивается, его место занимает другой, затем третий и т. д. Поэтому фаза может оставаться постоянной примерно только в течение 10 -8сек. При усреднении за промежутки времени, много большие 10 -8сек, интерференционный член от двух источников выпадает, так как фазы источников за это время много раз изменятся. Световые ячейки Керра позволяют регистрировать свет с очень большой скоростью, и с их помощью удалось показать, что интерференционный член меняется за время порядка 10 -8сек. Но большинство приборов не может регистрировать свет в столь малые интервалы времени и, естественно, не обнаруживает интерференции. Для глаза время усреднения — порядка 1/10 сек, поэтому увидеть интерференцию обычных источников совершенно невозможно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 1. Механика, излучение и теплота»

Представляем Вашему вниманию похожие книги на «Том 1. Механика, излучение и теплота» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 1. Механика, излучение и теплота»

Обсуждение, отзывы о книге «Том 1. Механика, излучение и теплота» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x