Ричард Фейнман - Том 1. Механика, излучение и теплота

Здесь есть возможность читать онлайн «Ричард Фейнман - Том 1. Механика, излучение и теплота» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 1. Механика, излучение и теплота: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 1. Механика, излучение и теплота»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Том 1. Механика, излучение и теплота — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 1. Механика, излучение и теплота», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фиг 301 Результирующая амплитуда шести аквидистантных источников при - фото 752

Фиг. 30.1. Результирующая амплитуда шести аквидистантных источников при разности фаз φ между каждыми двумя соседними источниками.

Вершины многоугольника лежат, конечно, на окружности, и чтобы легче было определить результирующую амплитуду, найдем радиус этой окружности. Пусть Q есть ее центр. Тогда угол OQS равен как раз фазе φ (поскольку радиус QS образует с А 2такой же угол, как QO с A 1). Следовательно, радиус r должен удовлетворять равенству А =2 r sinφ/2, откуда мы и находим величину r. Далее, большой угол OQT равен nφ; следовательно, A R=2 r sinnφ/2. Исключая из обоих равенств r, получаем

302 Таким образом суммарная интенсивность оказывается равной 303 - фото 753(30.2)

Таким образом, суммарная интенсивность оказывается равной

303 Проанализируем это выражение и обсудим вытекающие из него следствия - фото 754(30.3)

Проанализируем это выражение и обсудим вытекающие из него следствия. Прежде всего, положив n=1, получим, как и следовало ожидать, I=I 0. Проверим формулу для n=2: с помощью соотношения sinφ=2sin φ/2cosφ/2 сразу находим А R =2 Acos φ/2, что совпадает с (29.12).

Мы вынуждены рассматривать сложение полей от многих источников потому, что в этом случае интенсивность в одном направлении получается много больше, чем в соседних, т. е. все побочные максимумы интенсивности оказываются гораздо меньше основного. Чтобы понять этот факт, начертим кривую соответствующую выражению (30.3) для больших n и φ, близких к нулю. Прежде всего, когда φ точно равно нулю, мы получаем отношение 0/0, но фактически для бесконечно малых φ отношение синусов равно n 2, так как синус можно заменить его аргументом. Таким образом, максимум кривой в n 2раз больше интенсивности одного осциллятора. Этот результат легко понять, поскольку при нулевой разности фаз все n маленьких векторов складываются в один вектор, в n раз больший исходного, а интенсивность увеличивается в n 2раз.

С ростом фазы φ отношение двух синусов падает и обращается в нуль в первый раз при nφ/2=π, поскольку sinπ=0. Другими словами, значение φ=2π/ n отвечает первому минимуму кривой (фиг. 30.2). С точки зрения векторов на фиг. 30.1 первый минимум возникает в том случае, когда стрелки векторов возвращаются в исходную точку, при этом полная разность фаз от первого до последнего осциллятора равна 2π.

Перейдем к следующему максимуму и покажем, что он действительно, как мы и ждали, много меньше первого. Для точного определения положения максимума необходимо учитывать, что и числитель, и знаменатель в (30.3) оба меняются с изменением φ. Мы не станем этого делать, поскольку при большом n sinφ/2 меняется медленнее sinφ/2 и условие sinφ/2=1 дает положение максимума с большой точностью. Максимум sin 2nφ/2 достигается при nφ/2=Зπ/2 или φ=Зπ/n. Это означает, что стрелки векторов описывают полторы окружности.

Подставляя φ=3π/n, получаем sin 23π/2=1 в числителе (30.3) (с этой целью и был выбран угол φ) и sin 23n/2n в знаменателе. Для достаточно большого n можно заменить синус его аргументом: sin 3π/2n=3π/2n. Отсюда интенсивность во втором максимуме оказывается равной I=I 0(4n 2/9π 2). Но n 2I 0— не что иное, как интенсивность в первом максимуме, т. е. интенсивность второго максимума получается равной 4/9π 2от максимальной, что составляет 0,047, или меньше 5%! Остальные максимумы, очевидно, будут еще меньше. Таким образом, возникает очень узкий основной максимум и очень слабые дополнительные максимумы по обе стороны от основного.

Можно показать, что площадь под кривой интенсивности, включая все максимумы, равна 2πnI 0и в два раза превышает площадь пунктирного прямоугольника на фиг. 30.2.

Фиг 302 Зависимость интенсивности от фазового угла для большого числа - фото 755

Фиг. 30.2. Зависимость интенсивности от фазового угла для большого числа осцилляторов с одинаковыми амплитудами.

Посмотрим теперь, что дает формула (30.3) в приложении к разным случаям. Пусть источники расположены на одной линии, как показано на фиг. 30.3.

Фиг 303 Устройство из n одинаковых осцилляторов расположенных на линии - фото 756

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 1. Механика, излучение и теплота»

Представляем Вашему вниманию похожие книги на «Том 1. Механика, излучение и теплота» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 1. Механика, излучение и теплота»

Обсуждение, отзывы о книге «Том 1. Механика, излучение и теплота» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x