Ричард Фейнман - Том 1. Механика, излучение и теплота

Здесь есть возможность читать онлайн «Ричард Фейнман - Том 1. Механика, излучение и теплота» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 1. Механика, излучение и теплота: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 1. Механика, излучение и теплота»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Том 1. Механика, излучение и теплота — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 1. Механика, излучение и теплота», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Пользуясь выражением для квадрата вектора, легко изобрести скалярное произведение двух четырехвекторов: если один из них а μ, а другой b μ, то скалярное произведение определяется так:

1716 Это выражение не меняется при преобразовании системы координат - фото 429(17.16)

Это выражение не меняется при преобразовании системы координат.

Следует еще упомянуть о частицах с нулевой массой покоя, например о фотоне — частице света. Фотон похож на частицу тем, что он переносит энергию и импульс. Энергия фотона равна произведению некоторой постоянной (постоянная Планка) на частоту света: E = hv . Такой фотон несет с собой и импульс, который (как у всякой частицы) равен постоянной h , деленной на длину волны света: p = h /λ. Но у фотона связь между частотой и длиной волны вполне определенна: v = c /λ. (Количество волн, проходящих за 1 сек , помноженное на их длину, даст расстояние, проходимое светом в 1 сек , т. е. с .) Мы сходу получаем, что энергия фотона равна его импульсу, умноженному на с, и, далее, полагая с =1, что энергия равна импульсу . Но это и значит, что масса покоя равна нулю. Давайте вдумаемся в это любопытное обстоятельство. Если фотон — частица с нулевой массой покоя, то что с ним бывает, когда он останавливается? Но он никогда не останавливается ! Он всегда движется со скоростью с . Обычная формула для энергии — это m 0/√(1- v 2). Можно ли утверждать, что при m 0=0 и v=1 энергия фотона равна нулю? Нет, нельзя; на самом деле фотон может обладать (и обладает) энергией, хоть и не имеет массы покоя, за счет того, что всегда движется со скоростью света!

Мы знаем также, что импульс любой частицы равен произведению полной энергии на скорость: p = vE при с=1, или, в обычных единицах, p = vE / c 2. Для любой частицы, движущейся со скоростью света, р = Е , если с=1. Формулы для энергии фотона в движущейся системе даются по-прежнему уравнением (17.12), но вместо импульса туда нужно подставить энергию, умноженную на с (на 1). Изменение энергии при преобразовании означает изменение частоты света. Это явление называется эффектом Допплера; формулу для него легко получить из уравнения (17.12), положив Е = р и E = hv .

Как сказал Минковский: «Пространство само по себе и время само по себе погрузятся в реку забвенья, а останется жить лишь своеобразный их союз».

Глава 18 ДВУМЕРНЫЕ ВРАЩЕНИЯ

§ 1. Центр масс

В предыдущих главах мы изучали механику точек, или маленьких частиц, внутренняя структура которых нас совершенно не интересовала. В последующих нескольких главах мы изучим применение законов Ньютона к более сложным вещам. Но ведь чем сложнее объект, тем он интереснее, и вы сами увидите, что явления, связанные с такими более сложными объектами, поистине поразительны. Разумеется все эти явления не содержат ничего большего, чем комбинации законов Ньютона, однако временами просто трудно поверить, что все это произошло из F= m a!

Что это за более сложные объекты, с которыми мы будем иметь дело в дальнейшем? Это может быть течение воды, вращение галактик и т. д. Но сначала давайте разберемся с наиболее простым из сложных объектов— твердым телом . Этим термином мы будем называть монолитный объект, который одновременно с изменением положения может еще и вращаться как целое. Впрочем, даже такой простой объект может двигаться достаточно сложно, поэтому давайте сначала рассмотрим наиболее простой случай движения, когда тело крутится вокруг неподвижной оси , причем каждая точка этого тела движется в плоскости, перпендикулярной к этой оси. Такое вращение тела вокруг неподвижной оси называется плоским , или двумерным . Позднее, когда мы обобщим наш результат на случай трех измерений, вы увидите, что вращение гораздо более хитрая штука, чем механика частицы, и без достаточного опыта в двух измерениях понять трехмерные вращения очень трудно.

К первой интересной теореме о движении сложного тела можно прийти следующим образом: попробуйте бросить какой-нибудь предмет, состоящий из множества скрепленных между собой кубиков и стержней. Вы знаете, конечно, что он полетит по параболе; это мы обнаружили еще, когда изучали движение точки. Однако теперь наш объект не точка. Он поворачивается, покачивается и все же летит по параболе; вы можете в этом убедиться. Какая же точка тела описывает параболу? Ну разумеется, не угол кубика, потому что он поворачивается, не конец стержня, не его середина и не центр кубика. Но все-таки что - то движется по параболе, существует некий эффективный «центр», который движется по параболе. Таким образом, первая теорема о сложных объектах говорит, что существует какая-то «средняя» точка, вполне определенная математически, которая движется по параболе. Точка эта не обязательно находится в самом теле, она может лежать и где-то вне его.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 1. Механика, излучение и теплота»

Представляем Вашему вниманию похожие книги на «Том 1. Механика, излучение и теплота» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 1. Механика, излучение и теплота»

Обсуждение, отзывы о книге «Том 1. Механика, излучение и теплота» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x