Частицы с общими свойствами предсказанных Сакураи векторных мезонов были открыты экспериментально уже в следующие два года, и мысль о том, что они могут каким-то образом раскрыть секрет сильного взаимодействия, стояла за попытками с их помощью разобраться в сложных взаимодействиях между нуклонами и другими частицами.
В ответ на предположение о том, что в основе сильного взаимодействия может лежать какая-то разновидность симметрии Янга – Миллса, Мюррей Гелл-Манн разработал изящную схему симметрии, которую в духе дзен назвал восьмеричным путем. Эта схема не только позволяла классифицировать восемь различных векторных мезонов, но и предсказывала существование новых, не наблюдавшихся до той поры частиц, участвующих в сильном взаимодействии. Идея о том, что эти новопредложенные симметрии природы, возможно, помогут привнести порядок в то, что казалось на тот момент безнадежным паноптикумом элементарных частиц, оказалась настолько захватывающей, что, когда предсказанная им частица была-таки открыта, Гелл-Манн получил Нобелевскую премию.
Но Гелл-Манна чаще всего вспоминают в связи с другой, более фундаментальной идеей. Он – и независимо от него Джордж Цвейг – ввел то, что Гелл-Манн назвал кварками , заимствовав это слово из романа Джеймса Джойса «Поминки по Финнегану»; кварки помогли ученым физически объяснить свойства симметрий восьмеричного пути. Если предположить, что именно из кварков, которые Гелл-Манн рассматривал всего лишь как удобный инструмент для математических расчетов (точно так же Фарадей в свое время рассматривал предложенные им электрическое и магнитное поля), состоят все участвующие в сильном взаимодействии частицы, такие как протоны и нейтроны, то удавалось предсказать все симметрии и свойства известных частиц. И вновь в воздухе, казалось, повисло предчувствие близкого великого объединения, в результате которого разрозненные частицы и силы сольются в одно упорядоченное целое.
Значение гипотезы о кварках невозможно переоценить. Хотя Гелл-Манн и не утверждал, что его кварки представляют собой реальные физические частицы внутри протонов и нейтронов, предложенная им схема систематизации означала, что соображения симметрии, возможно, определяют в конечном итоге природу не только сильного взаимодействия, но и всех фундаментальных частиц в природе.
Однако утверждение о том, что один сорт симметрии, возможно, управляет строением вещества, еще ничего не говорило о том, что эта симметрия может быть расширена до некоторой разновидности калибровочной симметрии Гелл-Манна, определяющей взаимодействия между частицами. Уже надоевшая проблема наблюдаемых масс векторных мезонов означала, что они не могут по-настоящему отражать какую бы то ни было лежащую в основе сильного взаимодействия калибровочную симметрию, так чтобы однозначно определять ее форму и потенциально обеспечивать ей квантово-механический смысл. Любое расширение квантовой электродинамики по Янгу – Миллсу требовало, чтобы новые фотоноподобные частицы обладали нулевой массой. И точка.
И как раз в тот момент, когда физики столкнулись с этим непреодолимым на первый взгляд препятствием, прозвучал неожиданный звоночек от сверхпроводимости, открывший другую, более тонкую, но в конечном итоге более глубокую возможность.
Первым, кто разворошил погасшие было угли, стал теоретик, работавший непосредственно в области физики конденсированных сред, связанной со сверхпроводимостью в различных материалах. Филип Андерсон в Принстонском университете, позже получивший Нобелевскую премию за другие работы, предположил, что одно из наиболее фундаментальных и универсальных явлений в сверхпроводниках стоит рассмотреть в контексте физики элементарных частиц.
Одна из самых впечатляющих демонстраций, которые можно провести со сверхпроводниками, особенно с новыми высокотемпературными сверхпроводниками, в которых сверхпроводимость проявляется при температуре жидкого азота, состоит в том, чтобы заставить магнит висеть в воздухе над сверхпроводником, как показано на рисунке.
Это возможно по причине, которую экспериментально открыл в 1933 г. Вальтер Мейснер с коллегами, а объяснили теоретики Фриц и Хайнц Лондон двумя годами позже; причина эта известна как эффект Мейснера.
Как открыли Фарадей и Максвелл за шестьдесят лет до этого, электрические заряды по-разному отзываются на магнитное и электрическое поля. В частности, Фарадей открыл, что переменное магнитное поле может вызывать электрический ток в удаленном проводнике. Не менее важно, хотя раньше я этого не подчеркивал, что результирующий ток будет течь таким образом, чтобы породить новое магнитное поле в направлении, противоположном меняющемуся внешнему магнитному полю. Таким образом, если внешнее поле ослабевает, то возбужденный ток породит магнитное поле, которое противится этому ослаблению. Если оно усиливается, то возбужденный ток будет течь в противоположном направлении, порождая магнитное поле, которое будет противиться этому росту.
Читать дальше
Конец ознакомительного отрывка
Купить книгу