В газе или твердом теле при комнатной температуре обычно происходит так много столкновений между частицами, что их индивидуальные состояния стремительно меняются, а какое бы то ни было коллективное поведение невозможно. Однако бозонный газ при достаточно низкой температуре может превращаться в конденсат Бозе – Эйнштейна, в котором самостоятельность отдельных частиц исчезает. Вся система ведет себя как единый, иногда даже макроскопический объект, но подчиняется правилам квантовой, а не классической механики.
В результате конденсат Бозе – Эйнштейна может обладать весьма экзотическими свойствами – так же как свет лазера может вести себя совершенно иначе, чем обычный свет от фонарика. Поскольку конденсат Бозе – Эйнштейна представляет собой массовое объединение того, что в противном случае было бы отдельными невзаимодействующими частицами, в единое квантовое состояние, создание такого конденсата требовало особых, весьма экзотических атомно-физических экспериментов. Непосредственно наблюдать образование конденсата из составляющих газ частиц впервые удалось только в 1955 г. американским физикам Карлу Виману и Эрику Корнеллу, и это достижение также было сочтено достойным Нобелевской премии.
Возможность подобной конденсации в толще такого вещества, как ртуть, выглядит особенно странной, потому что изначально в ней участвуют электроны, которые в нормальных условиях не только отталкиваются друг от друга, но к тому же имеют полуцелый спин и, как я уже отмечал, будучи фермионами, ведут себя противоположно бозонам.
Но, когда образуются куперовские пары, каждые два электрона начинают действовать совместно, а поскольку у каждого из них спин равен ½, составной объект получает целочисленный (2 × ½) спин. И вуаля – создан новый тип бозона. Минимально возможное энергетическое состояние системы, в которое она приходит при низкой температуре, представляет собой конденсат из куперовских пар, где все они находятся в одном и том же состоянии. Когда это происходит, свойства материала полностью меняются.
До образования конденсата, когда к проволоке прикладывают напряжение, отдельные электроны начинают двигаться – возникает электрический ток. Сталкиваясь по пути с атомами, электроны теряют энергию, отчего возникает знакомое всем нам электрическое сопротивление, приводящее к нагреву проводника. Когда же образуется конденсат, отдельные электроны и даже отдельные куперовские пары теряют всякую индивидуальную идентичность. Подобно боргам из сериала «Звездный путь», они вливаются в коллектив. При возникновении электрического тока весь конденсат движется как единое целое.
Если бы конденсат столкнулся с отдельным атомом и отскочил от него, изменилась бы траектория всего конденсата. Но это потребовало бы значительного количества энергии – намного больше, чем нужно, чтобы изменить направление движения отдельного электрона. Классически мы можем описать этот результат следующим образом: при низких температурах случайные колебания атомов не содержат достаточно тепловой энергии, чтобы изменять движение всей массы конденсата, включающего множество частиц. Это как пытаться сдвинуть с места грузовик, бросая в него попкорном. С квантово-механической точки зрения результат аналогичен. В этом случае мы сказали бы, что для изменения конфигурации конденсата весь массив конденсата частиц должен был бы сдвинуться на значительную фиксированную величину и перейти в новое квантовое состояние, которое энергетически отличается от первоначального. Но тепловая ванна при низкой температуре не может обеспечить такой энергии. В качестве альтернативы мы могли бы предположить, что столкновение разбивает два электрона куперовской пары в составе конденсата – ну, скажем, как при столкновении со столбом у грузовика отламывается зеркало заднего вида. Но при низких температурах все движется слишком медленно, чтобы это могло произойти, так что ток течет беспрепятственно. Борг сказал бы, что сопротивление бесполезно. В данном случае, однако, сопротивления просто нет. Однажды возбужденный ток будет течь вечно, даже если убрать источник, который первоначально был подключен к проводнику.
Это была теория сверхпроводимости Бардина – Купера – Шриффера (БКШ) – замечательный труд, позволивший в конечном итоге объяснить все экспериментальные свойства таких сверхпроводников, как ртуть. Эти новые свойства свидетельствуют, что основное состояние системы изменилось по сравнение с тем, в котором она находилась до превращения в сверхпроводник; подобно ледяным кристаллам на оконном стекле, эти новые свойства отражают спонтанное нарушение симметрии. В сверхпроводниках нарушение симметрии не так наглядно, как в ледяных узорах на стекле, но оно тем не менее есть, хотя и скрыто под поверхностью.
Читать дальше
Конец ознакомительного отрывка
Купить книгу