Вы, возможно, замечали, что если во время разговора по сотовому телефону вы заходите в лифт, особенно в такой, где внешняя часть лифтовой шахты обшита металлом, то после закрытия дверей ваш звонок сбрасывается. Это пример действия так называемой клетки Фарадея. Поскольку сигнал принимается телефоном в виде электромагнитной волны, металл прикрывает вас от внешнего сигнала; дело в том, что токи в металле текут так, чтобы по возможности гасить меняющиеся электрическое и магнитное поля сигнала, снижая таким образом его силу внутри лифта.
Если бы у вас был идеальный проводник безо всякого электрического сопротивления, то заряды в металле могли бы, по существу, скомпенсировать любое действие внешнего переменного электромагнитного поля. Внутри лифта не осталось бы никакого сигнала этих переменных полей, то есть никакого телефонного сигнала, который можно было бы принять. Более того, идеальный проводник экранировал бы также действие любого постоянного внешнего электрического поля, поскольку в ответ на любое поле заряды в сверхпроводнике могут перераспределиться так, чтобы полностью его скомпенсировать.
Но эффект Мейснера этим не ограничивается. В случае сверхпроводника никакие магнитные поля, даже постоянные магнитные поля – такие, каким обладает магнит на картинке, не могут проникать внутрь сверхпроводника. Дело в том, что, если вы медленно подносите магнит издалека ближе, в сверхпроводнике возбуждается ток, компенсирующий меняющееся магнитное поле, которое усиливается с приближением магнита. Но, поскольку речь идет о сверхпроводящем материале, ток в нем продолжит течь и не остановится даже тогда, когда вы перестанете двигать магнит. Затем, если вы поднесете магнит еще ближе, в сверхпроводнике возникнет больший ток, чтобы скомпенсировать усиление поля. И так далее. Таким образом, поскольку электрические токи в сверхпроводнике могут течь без рассеивания, экранируются не только электрические поля, но и магнитные. Вот почему магниты могут левитировать над сверхпроводниками. Токи в сверхпроводнике выталкивают магнитное поле внешнего магнита, и это отталкивает магнит в точности так же, как если бы на поверхности сверхпроводника находился другой магнит, северный полюс которого был бы обращен к северному полюсу внешнего магнита (или южный полюс – к южному).
Братья Лондоны, которые первыми попытались объяснить эффект Мейснера, вывели уравнение, описывающее это явление внутри сверхпроводника. Результат наводил на размышления. Каждому отдельному типу сверхпроводника соответствует характерная величина подповерхностного слоя, определяемая микроскопической природой сверхпроводящих токов, возникающих в материале для компенсации внешних полей, – и любое внешнее магнитное поле на этой глубине гасится. Эта величина называется лондоновской глубиной проникновения. Для разных сверхпроводников эта глубина зависит от деталей их микрофизики, но как именно зависит, братья определить не смогли, поскольку микроскопической теории сверхпроводимости в то время не было.
Тем не менее само наличие глубины проникновения поразительно, поскольку подразумевает, что электромагнитное поле в сверхпроводнике ведет себя не так, как обычно, – оно больше не является дальнодействующим. Но если электромагнитные поля под поверхностью сверхпроводника становятся близкодействующими, то и носитель электромагнитных взаимодействий должен вести себя необычно. Какой же из этого следует вывод? Фотон в сверхпроводнике ведет себя так, будто он обладает массой.
В сверхпроводниках виртуальные фотоны, как и переносимые ими электрические и магнитные поля, могут распространяться под поверхностью только на расстояние, сравнимое с лондоновской глубиной проникновения, – в точности так, как обстояло бы дело, если бы электромагнетизм внутри сверхпроводника был результатом обмена массивными, а не безмассовыми фотонами.
Теперь представьте, каково было бы жить внутри сверхпроводника. Для вас электромагнетизм был бы силой с малым радиусом действия, фотоны – массивными частицами, а вся знакомая физика, которую мы связываем с электромагнетизмом как дальнодействующей силой, исчезла бы.
Я хочу еще раз подчеркнуть, как необычна и замечательна эта ситуация. Ни один эксперимент, который вы могли бы провести внутри сверхпроводника – при условии, что он остается в сверхпроводящем состоянии, не показал бы, что во внешнем мире фотоны не имеют массы. Если бы вы были платоновским философом внутри такого сверхпроводника, вам понадобилось бы огромное число догадок об окружающем мире, чтобы прийти к выводу, что некое загадочное и невидимое явление порождает такую иллюзию. Не одна тысяча лет была бы потрачена на размышления и эксперименты, прежде чем вы или ваши потомки смогли бы догадаться о природе реальности, лежащей в основе мира теней, в котором вы живете, или создать устройство, обладающее достаточной энергией для разбиения куперовских пар и выхода из сверхпроводящего состояния; при этом электромагнетизм был бы восстановлен в его нормальном виде и выяснилось бы, что фотон не имеет массы.
Читать дальше
Конец ознакомительного отрывка
Купить книгу