Квантовый вакуум — это неизбежный результат двух факторов, первым из которых является существование силовых полей. Как уже упоминалось, физики рассматривают фундаментальную реальность как огромное море таких полей. В этой картине, известной как теория квантового поля, фундаментальные частицы — всего лишь локализованные выступы или узелки в поле. Электромагнитное поле изучено лучше всего, а также имеет наибольшее влияние на наш мир, потому что именно оно соединяет атомы в наших телах (и прочих предметах) воедино. Электромагнитное поле может колебаться бесчисленным количеством различных способов, и каждый вид осцилляции соответствует волне с определённой длиной. Представьте себе морские волны, которые могут быть как огромными валами, так и лёгкой рябью. Можно интуитивно предположить, что в космическом вакууме вообще нет электромагнитных волн, и это было бы действительно так, если бы не одна небольшая оговорка в принципе неопределённости Гейзенберга. Это, казалось бы, невинное утверждение имеет огромные последствия, так как требует, чтобы каждая из бесконечного количества осцилляций электромагнитного поля имела минимальный уровень энергии в соответствии с принципом неопределённости. Иными словами, существование каждого варианта колебаний — это не вероятность, а точный факт. Итак, квантовый вакуум вовсе не пуст. Наоборот, в нём наблюдается невероятная концентрация энергии, даже бо́льшая, чем внутри атомного ядра. Мы не замечаем этого по той же причине, по которой не видим воздух: он повсюду одинаковый.
Vasileiou V. et al. A Planck-scale limit on space-time fuzziness and stochastic Lorentz invariance violation // Nature Physics. — 2015. — Vol. 11. — P. 344 ( http://www.nature.com/nphys/journal/v11/n4/full/nphys3270.html). Perlman E. et al. New constraints on quantum gravity from X-ray and gamma-ray observations // Astrophysical Journal. — 20 May 2015. — Vol. 805. — No. 1. — P. 10. — arXiv:1411.7262v5.
Wolchover N. Visions of Future Physics // Quanta Magazine. — 22 September 2015 ( https://www.quantamagazine.org/nima-arkani-hamed-and-the-future-of-physics-20150922/).
Planck M. Über irreversible Strahlungsvorgänge // Annalen der Physik. — 1900. — Vol. 306, Issue 1. — P. 69–122.
Rothman T., Boughn S. Can gravitons be detected? — 2008. — arXiv:gr-qc/0601043v3.
Электронвольт (эВ) — это уровень энергии, приобретаемой электроном после разгона под воздействием 1 вольта. Гигаэлектронвольт (ГэВ) больше его в миллиард раз.
Commissariat T. BICEP2 gravitational wave result bites the dust thanks to new Planck data // Physics World. — 22 September 2014 ( https://physicsworld.com/a/bicep2-gravitational-wave-result-bites-the-dust-thanks-to-new-planck-data/).
Einstein A. Näherungsweise Integration der Feldgleichungen der Gravitation // Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften. — Berlin: Verlag der Königlichen Akademie der Wissenschaften, 1916. — P. 696.
Адамс Д. Ресторан в конце Вселенной. — 1980.
Gorelik G. Why Is Quantum Gravity So Hard? And Why Did Stalin Execute the Man Who Pioneered the Subject? // Scientific American. — 14 July 2011. ( https://blogs.scientificamerican.com/guest-blog/why-is-quantum-gravity-so-hard-and-why-did-stalin-execute-the-man-who-pioneered-the-subject/).
Бронштейн М. Всемирное тяготение и электричество (новая теория Эйнштейна) // Человек и природа. — 1929. — Выпуск 8. — С. 20.
Если повернуть частицу со спином 2 на половину оборота, она будет выглядеть так же, как в изначальном положении (представьте себе стрелу с двумя остриями). Чтобы получить тот же результат с частицей со спином 1, нужно повернуть её на полный оборот (обычная стрела с одним остриём). А вот в случае с частицей с половинным спином для подобного результата требуются два поворота! Представьте себе, что, обернувшись один раз вокруг своей оси, вы окажетесь другим человеком, а обернувшись дважды — снова станете собой. Именно так обстоят дела для электронов, самых распространённых частиц со спином 1/2. Если квантовый спин — это что-то новое для науки, то половинный квантовый спин — дважды новое!
См. Chown M. We Need to Talk About Kelvin. — London: Faber & Faber, 2009. — Chaper 3: No More than Two Peas in a Pod at a Time.
Специальная теория относительности и квантовая теория также накладывают строгие ограничения на взаимодействие между частицами и переносчиками силы. Если вы предполагаете, что частица может одновременно взаимодействовать, например, с пятью или двенадцатью переносчиками, вы ошибаетесь. Переносчик может быть только один. Пространственно-временную диаграмму, которую обычно используют для иллюстрации такого события, называют диаграммой Фейнмана. На ней это ограничение показано как следующее условие: в одной точке пространства-времени (вершине) могут сойтись только три частицы. Например, если к вершине подходит электрон, фотон сталкивается с ним и поглощается, а затем электрон отбрасывается в другом направлении. Но специальная теория относительности и квантовая теория упрощают дело лишь в нашем обычном мире с низкими уровнями энергии и большими расстояниями. На малых расстояниях и при высоких энергетических уровнях взаимодействия происходят более сложным образом.
Читать дальше