Маркус Чаун - Гравитация. Последнее искушение Эйнштейна

Здесь есть возможность читать онлайн «Маркус Чаун - Гравитация. Последнее искушение Эйнштейна» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2017, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Гравитация. Последнее искушение Эйнштейна: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Гравитация. Последнее искушение Эйнштейна»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Разгадав тайну гравитации, мы сможем ответить на величайшие вопросы науки: что такое пространство? Что такое время? Что такое Вселенная? Откуда все это взялось?
Прославленный научно-популярный автор Маркус Чаун приглашает вас в увлекательное путешествие — с того момента, как в 1666 году гравитация была признана физической силой, до открытия гравитационных волн в 2015 году. Близится тектонический сдвиг в наших представлениях о физике, и эта книга рассказывает, какие вопросы ставит перед нами феномен гравитации.

Гравитация. Последнее искушение Эйнштейна — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Гравитация. Последнее искушение Эйнштейна», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Heisenberg W. Physics and Philosophy. — London: Penguin Classics, 2000.

229

Интерференция — это определяющая характеристика волн. Если две волны накладываются друг на друга и их пики совпадают, они усиливают друг друга и происходит конструктивная интерференция. Если же высшая точка одной из волн совпадает с нижней точкой другой волны, то они гасят друг друга и происходит деструктивная интерференция. Именно этот эффект продемонстрировал опыт Томаса Юнга в 1801 году (см. главу 5).

230

Строго говоря, вероятность обнаружения частицы в каком-либо месте равна квадрату волновой амплитуды в определённой точке. Вероятность всегда представляет собой число от 0 до 1, где 0 соответствует нулевой вероятности, а 1 — 100%-ной.

231

Большинство физиков полагают, что квантовые системы изолированы и что они перестают действовать в соответствии с квантовыми законами в результате процесса, называемого декогерентностью. Важно понять, что учёные ни разу не наблюдали квантовое поведение напрямую. Когда человеческий глаз регистрирует фотон, тот оставляет свой отпечаток на сотнях атомов. Именно его воспринимает мозг (то есть, по сути, всё, что мы видим, — это мы сами). Сотни атомов трудно удержать в суперпозиции (волны прекращают накладываться друг на друга, наступает декогерентность), и квантовые свойства утрачиваются. Однако, если бы все эти атомы можно было удержать в суперпозиции, квантовые эффекты, в принципе, могли бы проявляться в любых масштабах. Сегодня физики пытаются достичь этого, например построить «квантовый компьютер», основанный на способности квантовых систем одновременно проводить множество процессов. С другой стороны, Роджер Пенроуз полагает, что квантовые эффекты не могут проявляться во всех возможных масштабах и что существует порог массы, за которым происходит переход от квантовой физики к классической. Какая из сторон права, выяснится в результате экспериментов. См.: Chown M. Quantum Theory Cannot Hurt You. — London: Faber & Faber, 2006.

232

Соотнесение квантового мира, где всё существует в диапазоне вероятностей, и повседневного мира, где существование каждой вещи строго определено, — это фундаментальная и глубокая задача. Существует как минимум 13 интерпретаций квантовой теории, которые пытаются сделать это, и все они предсказывают одни и те же результаты для каждого возможного эксперимента. Возможно, самой невероятной интерпретацией является теория множественных миров, предложенная Хью Эвереттом III в 1957 году. Согласно ей каждая волна в суперпозиции описывает отдельную реальность. Например, если атом кислорода находится в суперпозиции двух волн, одна из которых описывает его расположение в левой части комнаты, а вторая — в правой, на самом деле он находится в обоих местах одновременно, но в двух параллельных реальностях.

233

Это поразительное открытие сделал французский математик Жозеф Фурье (1767–1830), который обнаружил, что, поместив две синусоиды с разной длиной волны и в разных фазах (то есть с рассинхронизированными пиками относительно друг друга) в суперпозицию, можно создать волну абсолютно любой формы, к примеру квадратную. Можно предположить, что как атомы являются базовыми строительными блоками материи, так и синусоиды — волн.

234

См. главу 8.

235

Сам Гейзенберг по-другому объяснял свой принцип неопределённости. Он говорил, что волновая природа любого тела, благодаря которой мы можем его видеть, делает невозможным определение его местоположения. Именно это учили десятки студентов-физиков. Но Гейзенберг был не прав. Принцип неопределённости не имеет никакого отношения к измерению. Неопределённость — это внутреннее свойство субмикроскопического мира. См.: Brumfiel G. Quantum uncertainty not all in the measurement: A common interpretation of Heisenberg’s uncertainty principle is proven false // Nature. — 11 September 2012.

236

Представьте себе группу, которая состоит из движущихся мимо наблюдателя световых волн. Из-за существования неопределённости в её местоположении (d x ) можно предположить, что и время прохождения волн мимо наблюдателя (d t ) тоже не определено и равно d x / c , где с — это скорость света. А из-за неопределённости импульса (d p ) также возникает неопределённость энергии (d E ), равная d p × c . Так как d p × d x > ℎ/2π, следовательно, d E × d t > ℎ/2π. В данном случае волна (очень удачно) движется со скоростью света, но этот результат верен и для более общих случаев, когда волновая группа представляет квантовую частицу, хотя в этом случае демонстрация будет более сложной.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Гравитация. Последнее искушение Эйнштейна»

Представляем Вашему вниманию похожие книги на «Гравитация. Последнее искушение Эйнштейна» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Гравитация. Последнее искушение Эйнштейна»

Обсуждение, отзывы о книге «Гравитация. Последнее искушение Эйнштейна» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x