Чёрное тело впитывает все попадающее на него тепло. Оно распределяется между всеми его атомами в ходе постоянных столкновений быстрых атомов с более медленными. В результате чёрное тело излучает тепло вне зависимости от того, из какого вещества оно состоит. «Излучение чёрного тела» имеет универсальный спектр, который зависит лишь от одной величины — температуры.
Chown M. Afterglow of Creation. — London: Faber & Faber, 2010.
Schulman L. S. Source of the observed thermodynamic arrow // Journal of Physics: Conference Series. — 2009. — Vol. 174. — 012022. — arXiv:0811.2787.
Сам Эйнштейн никогда не верил в чёрные дыры. В октябре 1939 года он опубликовал работу, в которой (ошибочно) заявил, что для образования чёрной дыры из скопления звёзд они должны вращаться вокруг друг друга со скоростью больше скорости света, что невозможно в соответствии со специальной теорией относительности. См. Einstein A. On a Stationary System With Spherical Symmetry Consisting of Many Gravitating Masses // Annals of Mathematics. Second Series. — 1939. — Vol. 40. — No. 4. — P. 922 ( https://www.jstor.org/stable/1968902).
См.: Chown M. Quantum Theory Cannot Hurt You. — London: Faber & Faber, 2014.
Строго говоря, квантовая теория описывает не малые, а «изолированные» тела, то есть тела, на которые не оказывает влияния их окружение. На практике, однако, это всё-таки делает квантовую теорию теорией малых тел, так как атом гораздо легче выделить из окружающей среды, чем более крупное тело — например, вас, ведь в вас постоянно будут врезаться молекулы воздуха и частицы света.
Einstein A. Näherungsweise Integration der Feldgleichungen der Gravitation // Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften. — Berlin: Verlag der Königlichen Akademie der Wissenschaften, 1916. — P. 696. (Также переиздано в книге: Einstein A. The Collected Papers of Albert Einstein / Volume 6 — The Berlin Years: Writings, 1914–1917. — Princeton: Princeton University Press, 1996. — 32. Approximate Integration of the Field Equations of Gravitation. — P. 347 ( https://einsteinpapers.press.princeton.edu/vol6-doc/375))
Bragg W. Electrons and Ether Waves (The Robert Boyle Lecture 1921) // Scientific Monthly. — 1922. — Vol. 14. — P. 158.
Эту фразу Нильс Бор сказал Вольфгангу Паули после презентации нелинейной теории поля элементарных частиц Гейзенбергом и Паули в Колумбийском университете в 1958 году. См.: Dyson F. Innovation in Physics // Scientific American. — September 1958. — Vol. 199. — No. 3. — P. 74.
Гамма-лучи переносят ещё больше энергии, чем рентгеновские. Они были открыты французским физиком и химиком Полем Вилларом в 1900 году, а название им дал новозеландский физик Эрнест Резерфорд в 1903 году. Источником гамма-лучей являются ядра атомов, содержащие огромные объёмы энергии.
Когда свет попадает на поверхность определённого металла, с неё выбиваются электроны, и чем больше объём (выше интенсивность) света, тем больше электронов высвобождается. Но если энергия света имеет значение меньше порогового, высвобождения электронов не происходит. Согласно Эйнштейну, этот «фотоэлектрический эффект» можно объяснить тем, что свет состоит из фотонов, и только те из них, которые обладают достаточной энергией, в состоянии выбить электроны из атомов металла.
Как только были подтверждены существование атомов и их крохотные размеры (десять миллионов атомов могут поместиться в точку в конце этого предложения), учёные задумались о парадоксе. Длина волны видимого света примерно в 10 000 раз больше размеров атома. Как же он может поглощать или излучать свет? Всё дело в том, что свет локализуется в фотонах, имеющих атомные размеры.
Если верить стандартной космологической модели, также известной как модель расширения, когда-то Вселенная была так мала, что не содержала практически никакой информации. Сегодня учёные полагают, что всё было наоборот: информации в ней было ровно столько, сколько требовалось, чтобы описать местоположение каждого атома во Вселенной. На вопрос, откуда взялась эта информация, отвечает квантовая теория, в которой информация является синонимом случайности. Каждое случайное квантовое событие, произошедшее с момента Большого взрыва, например распад радиоактивного атома, добавляет Вселенной информации и сложности. Когда Эйнштейн говорил, что Бог не играет в кости, он был абсолютно не прав. Если бы Бог не играл в кости, Вселенной вообще не было бы или по крайней мере, в ней бы не происходило ничего интересного. См. главу «Random Reality» в книге: Chown M. The Never-Ending Days of Being Dead. — London: Faber & Faber, 2007.
См. главу 7.
Читать дальше