Александр Львовский - Отличная квантовая механика

Здесь есть возможность читать онлайн «Александр Львовский - Отличная квантовая механика» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Альпина нон-фикшн, Жанр: Физика, sci_popular, sci_textbook, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Отличная квантовая механика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Отличная квантовая механика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Наряду с традиционным материалом, охватываемым курсом квантовой механики (состояния, операторы, уравнение Шрёдингера, атом водорода), в книге предлагается глубинное обсуждение таких концепций, как гильбертово пространство, квантовое измерение, запутанность и декогеренция. Эти концепции имеют решающее значение для понимания квантовой физики и ее связи с макроскопическим миром, но редко рассматриваются в учебниках начального уровня.
В книге применяется математически простая физическая система — поляризация фотонов — в качестве инструмента визуализации, что позволяет студенту увидеть запутанную красоту квантового мира с самых первых страниц. Формальные концепции квантовой физики проиллюстрированы примерами из современных экспериментальных исследований, таких как квантовые компьютеры, коммуникации, телепортация и нелокальность.
Материал книги успешно использовался в качестве основного учебного пособия в двухсеместровом курсе по квантовой механике для студентов-физиков. Однако потенциальный круг читателей много шире и охватывает как студентов и аспирантов, изучающих точные науки, так и всех интересующихся квантовой физикой и квантовыми технологиями. Математический аппарат, требующийся для понимания книги, не выходит за пределы курса технического вуза или математической школы.
Автор — профессор Оксфордского университета, экспериментатор с мировым именем в области квантовой оптики и квантовой информатики — применяет сократовскую педагогику: студенту предлагается самостоятельно разработать аппарат квантовой физики путем последовательного решения тщательно составленных задач. Подробные решения представлены во втором томе пособия.

Отличная квантовая механика — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Отличная квантовая механика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Интересно отметить, что термина «фотон» в то время не существовало. Его ввел в 1926 г. специалист по физической химии Гильберт Льюис [13] G. N. Lewis, The conservation of photons , Nature 118 , 874 (1926). .

Например, если A H= A Vи ϕ H= ϕ V= 0, то соответствующая классическая волна выглядит как Отличная квантовая механика - изображение 12 т. е. линейно поляризована под углом +45°. Соответственно, состояние Отличная квантовая механика - изображение 13(где делитель картинка 14связан с нормированием) обозначает единичный фотон с линейной поляризацией под +45°. В табл. 1.1 вы можете увидеть еще несколько примеров [14] Обсуждение договоренностей, принятых для состояний с круговой (циркулярной), поляризацией, см. в сноске 141. .

Из этого следует, что состояния | H ⟩ и | V ⟩ образуют в гильбертовом пространстве поляризационных состояний фотона ортонормальный базис — т. е. пространство двумерно. Действительно, прежде всего эти состояния ортогональны и потому линейно независимы (упр. A.17). Кроме того, любая поляризованная классическая волна может быть записана в виде (1.1), так что любое поляризационное состояние фотона тоже может быть записано аналогично (1.2), т. е. как линейная комбинация состояний | H ⟩ и | V ⟩. Мы будем называть базис {| H ⟩,| V ⟩} каноническим базисом нашего гильбертова пространства.

Упражнение 13Покажите что a поляризационные состояния 45 образуют - фото 15

Упражнение 1.3.Покажите, что:

a) поляризационные состояния ±45° образуют ортонормальный базис;

b) правое и левое круговые поляризационные состояния образуют ортонормальный базис.

Упражнение 1.4.Разложите | H ⟩ и | V ⟩ по базисам {|+⟩,|—⟩} и {| R ⟩,| L ⟩}.

Упражнение 1.5.Разложите | a ⟩ = |+30°⟩ и | b ⟩ = |–30°⟩ по базисам {| H ⟩,| V ⟩}, {|+⟩,|—⟩} и {| R ⟩,| L ⟩}. Найдите скалярное произведение ⟨a|b⟩ во всех трех базисах, используя операцию перемножения матриц. Одинаковые ли получились результаты?

Здесь есть сложный момент, который следует прояснить. Множество углов поляризации линейно поляризованных фотонов — континуум. Но в случае одномерного движения частицы, о котором говорилось в предыдущем разделе, множество позиционных состояний — также континуум. Почему же мы говорим, что одно из этих гильбертовых пространств имеет размерность два, а другое — бесконечность?

Разница в том, что линейно поляризованные состояния могут быть записаны в виде (1.2), т. е. в виде суперпозиции других линейно поляризованных состояний. Если мы поместим поляризующий светоделитель (разд. В.2), пропускающий только горизонтально поляризованные фотоны, на пути диагонально поляризованной волны, часть ее пройдет сквозь светоделитель. Это означает, что диагонально поляризованный фотон может быть обнаружен в горизонтальном поляризационном состоянии.

Состояния же, связанные с разными положениями в пространстве, напротив, все ортогональны: частицу, приготовленную в состоянии | x = 3 м⟩, невозможно обнаружить в точке x = 4 м. Также невозможно записать позиционное состояние в виде суперпозиции других позиционных состояний. Это значит, что соответствующее гильбертово пространство должно иметь намного более широкий базис, чем гильбертово пространство поляризационных состояний.

Для классической волны (1.1) сдвиг фаз одновременно горизонтального и вертикального компонентов на равную величину (т. е. ϕ H→ ϕ H+ ϕ 0, ϕ V→ ϕ V+ ϕ 0, что эквивалентно умножению правой части на картинка 16не меняет ее поляризации.

Аналогичное правило применимо и к квантовым состояниям. Умножение вектора состояния на eiϕ не меняет физической природы состояния. К примеру, | V ⟩, i| V ⟩ и —| V ⟩ представляют один и тот же физический объект, как и, скажем, Отличная квантовая механика - изображение 17и По этой причине мы на время пренебрежем множителем eiωt в 12 Мы называем - фото 18По этой причине мы на время пренебрежем множителем e−iωt в (1.2).

Мы называем комплексную величину eiϕ с действительным ϕ фазовым множителем . Умножение квантового состояния на фазовый множитель называется применением фазового сдвига на ϕ. Соответственно мы говорим, что применение фазового сдвига к квантовому состоянию не меняет его физических свойств. Как мы увидим в следующем разделе, это правило оказывается весьма общим: оно выполняется для всех физических систем, не только для электромагнитных волн. Разумеется, фазовый сдвиг должен быть глобальной природы (overall phase shift): если мы применим его только к части состояния, это состояние изменится. Например, если мы применим фазовый сдвиг на π/2 к вертикальному компоненту поляризованного под +45° фотона, Отличная квантовая механика - изображение 19то получим Отличная квантовая механика - изображение 20— фотон с правой круговой поляризацией, т. е. физически отличный от первоначального объекта.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Отличная квантовая механика»

Представляем Вашему вниманию похожие книги на «Отличная квантовая механика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Отличная квантовая механика»

Обсуждение, отзывы о книге «Отличная квантовая механика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x