Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий

Здесь есть возможность читать онлайн «Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Альпина, Жанр: Физика, Прочая научная литература, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика повседневности. От мыльных пузырей до квантовых технологий: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика повседневности. От мыльных пузырей до квантовых технологий»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Физика повседневности. От мыльных пузырей до квантовых технологий — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика повседневности. От мыльных пузырей до квантовых технологий», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Колебания пружины и пузырька

В положении равновесия форма воздушного пузырька небольшого размера в воде является сферической. Его радиус таков, что давление воздуха внутри пузырька компенсирует давление воды. В результате внешнего воздействия (например, звуковой волны) пузырь деформируется и затем начинает колебаться около своего равновесного положения.

Эти колебания могут быть представлены в виде суммы большого числа различных деформационных мод. Некоторые из них приводят к значительным смещениям поверхности пузыря; такие моды называют резонансными. Один из таких резонансов, резонанс Миннарта, происходит на весьма низкой частоте: при этом он соответствует возбуждению звуковых волн весьма больших длин (как в воздухе, так и в воде) по сравнению с размерами самого колеблющегося пузырька. Эти колебания оказываются аналогичными колебаниям подвешенного на пружине и выведенного из положения равновесия шара (см. илл. ниже): при отсутствии затухания шар начинает колебаться с определенной частотой ƒ, которая зависит только от величины его массы и жесткости k пружины. Чтобы понять аналогию с пузырьком, заметим, что масса шара M в случае пузырька соответствует массе вовлеченной в движение жидкости, в то время как роль возвращающей силы упругости пружины в случае пузырька играет сила избыточного давления, стремящаяся вернуть его поверхность в положение равновесия. В случае пружины эта сила пропорциональна удлинению x пружины: F = – kx , где постоянная k является характеристикой пружины. Частота колебаний шара равна

Физика повседневности От мыльных пузырей до квантовых технологий - изображение 173

Она тем выше, чем жестче пружина и меньше масса.

Колебания подвешенного на пружине шара a аналогичны колебаниям пузырька b - фото 174

Колебания подвешенного на пружине шара (a) аналогичны колебаниям пузырька (b), который осциллирует между двумя крайними позициями (пунктирные окружности) около своего равновесного положения (сплошная линия)

А какой же будет формула для колебаний пузырька? Воспользуемся методом размерности и подберем для пузырька характерные физические параметры, которые заменят M и k . Таким образом мы немного сократим сложный расчет (который, однако, остается необходимым для получения точного количественного результата). Характерные величины, которые, очевидно, должны войти в ответ, – это плотность ρ жидкости, радиус пузырька R в положении равновесия и начальное давление жидкости P . Действительно, возвращающая сила, воздействующая на поверхность пузыря, возникает из-за давления внутри него, которое в равновесном положении должно быть равным давлению жидкости. Масса же вовлеченной в движение жидкости по порядку величины соответствует произведению объема пузырька на ее плотность: (4/3)π R 3ρ. Что же касается коэффициента жесткости k , то он должен представлять собой отношение возвращающей силы к длине. Единственная величина, имеющая размерность длины в нашей задаче, – это радиус R , а величина с размерностью силы – это произведение давления P на площадь поверхности пузыря, то есть PR 2. Таким образом, коэффициент жесткости k должен быть порядка PR . Подставив эти значения в предыдущую формулу, получим результат, близкий к выражению, которое вывел Марсел Миннарт:

Физика повседневности От мыльных пузырей до квантовых технологий - изображение 175

где для пузырька воздуха γ = 7/5. Поверхностное натяжение σ в эту формулу не вошло: его роль становится существенной лишь в случае достаточно малых пузырьков.

Эти наблюдения, сделанные в результате произнесения авторами многочисленных тостов, тем не менее остаются эмпирическими. Эксперименты, проведенные в Университете Париж VII, позволили более точно изучить распространение звука в газированной жидкости. Исследователи, очевидно, использовали для своих экспериментов не шампанское, а содержащую пузырьки воздуха воду. Они обнаружили, что достаточно даже низкой концентрации воздушных пузырьков (порядка одного пузырька диаметром в миллиметр на кубический сантиметр жидкости), чтобы снизить скорость звука в несколько раз (порядка 10) и существенно смягчить слышимый звук. Влияние наличия пузырьков на скорость звука легко выяснить: последняя определяется комбинацией картинка 176где χ – сжимаемость (адиабатическая) среды, а ρ – ее плотность. Наличие небольшого количества пузырьков мало влияет на плотность жидкости (в рассмотренном выше случае – шампанского), в то время как сжимаемость, крайне низкая при отсутствии пузырьков, с их добавлением заметно увеличивается. Что же касается затухания звука в слышимом диапазоне, то это явление во многом связано с резонансом отдельных пузырей в жидкости. Ниже мы рассмотрим это явление подробнее.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика повседневности. От мыльных пузырей до квантовых технологий»

Представляем Вашему вниманию похожие книги на «Физика повседневности. От мыльных пузырей до квантовых технологий» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика повседневности. От мыльных пузырей до квантовых технологий»

Обсуждение, отзывы о книге «Физика повседневности. От мыльных пузырей до квантовых технологий» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x