В ядерном реакторе (илл. 2) получаемое в процессе деления ядер тепло передается первой жидкости, называемой теплоносителем, которая, в свою очередь, отдает его воде, а та уже испаряется. Образовавшийся пар, воздействуя на лопасти турбины, приводит ее в движение; по тому же принципу были устроены и паровозы первой половины XX века, двигатель которых работал благодаря давлению пара на поршень! Механическая энергия турбины далее преобразуется в электрическую посредством генератора переменного тока. Полученная электроэнергия доставляется потребителям, находящимся порой за сотни километров от АЭС.
2. Принцип действия реактора, охлаждаемого водой под давлением. Слева, в ядерном реакторе (желтый), выделяется тепло. Оно передается жидкому теплоносителю, показанному красным цветом, который, в свою очередь, передает тепло воде. Та испаряется, приводя в действие турбину, подключенную к генератору переменного тока, который уже преобразует механическую энергию в электрическую. После турбины пар в конденсаторе снова обращается в воду. Неиспользованное тепло отводится через охладитель
Элементы ядерной физики
Ядро атома состоит из частиц, называемых нуклонами. Существует два вида нуклонов, почти идентичных по массе: несущие положительный заряд протоны и лишенные электрического заряда нейтроны. Число протонов Z (или атомное число ) является характеристикой химического элемента. Общее число нуклонов A называется массовым числом . Два ядра одного и того же элемента, для которых числа A различны, называются изотопами. Таким образом, углерод ( Z = 6) имеет несколько изотопов, каждый из них имеет 6 протонов, но разное количество нейтронов. Два изотопа углерода, с массовыми числами 12 и 13 соответственно, являются стабильными; их записывают как 12С и 13С. Еще один изотоп, углерод-14 ( 14С), является нестабильным. Он, испуская электрон, произвольно превращается в ядро азота 14N ( Z = 7): говорят, что он радиоактивен.
Типы распада различаются в зависимости от характера частиц, испускаемых при ядерной трансформации. Испускание электрона или позитрона (частицы, идентичной электрону, но с противоположным зарядом) называется бета-распадом. Другой тип радиоактивности относится к «тяжелым» ядрам и соответствует испусканию ядра гелия – это альфа-распад. Наконец, гамма-распад означает излучение ядром фотона с очень высокой энергией. Излучение, испускаемое радиоактивными элементами, способно проникать в большей или меньшей степени сквозь любую материю. В зависимости от характера и интенсивности оно может представлять угрозу для здоровья.
Схема радиоактивного распада углерода-14. Нейтроны представлены красным цветом, протоны – синим
Проникающая способность различных радиоактивных излучений
Не любой изотоп урана способен подвергаться ядерному делению; расщепляется только 235U (илл. 3). При этом находящийся в природных минералах уран содержит только 0,71 % этого изотопа, а наиболее распространенным изотопом является 238U, который расщеплению не подвержен. Такой природный уран перед подачей в реактор должен быть обогащен 235U, что осуществляется на заводах по обогащению урана.
3. Принцип цепной реакции. Бомбардировка расщепляемого ядра нейтронами приводит к его делению на два более легких ядра. При этом расщепление сопровождается выделением тепла, а также испусканием излучения и одного или нескольких нейтронов, которые могут привести к последующему делению ядер
Контроль реакции в ядерном реакторе
Ядерная безопасность требует значительных мер предосторожности, потому что перегруженный реактор сравним по разрушительному воздействию с… атомной бомбой!
Мы уже знаем, что в реакторе тепло выделяется при расщеплении ядра урана-235 на два более легких ядра. Это деление не спонтанно: его вызывает бомбардировка нейтронами (илл. 3). Деление ядра сопровождается испусканием нескольких нейтронов (обычно двух-трех). При этом испущенные нейтроны с большой вероятностью вызывают последующие расщепления, которые, в свою очередь, высвободят новые нейтроны, и так далее: таким образом запускается цепная реакция . Это происходит только в том случае, если масса расщепляемого урана превышает определенную «критическую массу» (см. главу 13, врезку «Рождение атомной бомбы»): действительно, для небольшого блока урана-235 испускаемые нейтроны с высокой вероятностью покинут его раньше, чем успеют столкнуться с другим ядром и вызвать новое деление. Когда расщепляющаяся масса оказывается выше критической (несколько десятков килограммов чистого урана-235), то цепная реакция выходит из-под контроля: с течением времени происходит все большее число делений, в результате которых выделяется все больше тепла и радиоактивных элементов.
Читать дальше
Конец ознакомительного отрывка
Купить книгу