Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий

Здесь есть возможность читать онлайн «Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Альпина, Жанр: Физика, Прочая научная литература, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика повседневности. От мыльных пузырей до квантовых технологий: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика повседневности. От мыльных пузырей до квантовых технологий»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Физика повседневности. От мыльных пузырей до квантовых технологий — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика повседневности. От мыльных пузырей до квантовых технологий», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Кристаллы и стереометрия

Кристаллография не является исключительно экспериментальной наукой, она также опирается на математику: многие свойства кристаллов доказываются как теоремы. Одно из них касается кристаллической решетки – трехмерных «строительных лесов», на которых расположены атомы, ионы или молекулы кристалла. Задолго до исследований фон Лауэ минералоги старались подсчитать и классифицировать различные типы кристаллических решеток. Особенный случай – тот, при котором ячейка имеет лишь один атом: такая решетка называется решеткой Браве (илл. 5). Каждая такая решетка характеризуется набором геометрических преобразований (поворотов, инверсий, отражений в плоскости), которые оставляют ее неизменной. Существует только 14 типов решеток Браве, что было математически доказано французским физиком Огюстом Браве в 1848 году.

Вообще говоря, геометрические преобразования, которые оставляют произвольную кристаллическую решетку неизменной, ограничены. Например, вращение пятого порядка (то есть на 72° = 360°/5) в бесконечном кристалле, как мы увидим ниже, невозможно.

5 Три элементарные ячейки образующие путем многократного повторения в - фото 128

5. Три элементарные ячейки, образующие путем многократного повторения в пространстве три различных типа решеток Браве. Ячейки, изображенные на двух рисунках справа, не являются элементарными, простое повторение которых может воспроизвести полную решетку. Например, в объемноцентрированной кубической решетке элементарная ячейка представляет собой непрямоугольный параллелепипед, имеющий в качестве основания квадрат ABCD, и одна из его вершин E является центром куба

Дифракция рентгеновских лучей на кристаллах

Какой же физический принцип лежит в основе изучения структуры кристаллов посредством метода дифракции рентгеновских лучей? Когда на кристалл падает излучение, длина волны λ которого равна расстоянию между атомами (доли нанометра), то имеет место явление, аналогичное тому, которое возникает при прохождении пучка световых лучей через отверстия Юнга (см. главу 3, «Интерференция и когерентность»): атомы кристалла рассеивают рентгеновские лучи, также как щели Юнга рассеивают свет. Кристалл ведет себя как регулярная решетка, образованная из большого количества щелей Юнга (см. илл.). Лучи, рассеянные атомами, интерферируют.

В любой нерегулярной среде такая интерференция обычно деструктивна: рассеиваемые волны практически полностью гасят друг друга, за исключением направления распространения падающего луча. В кристалле же, из-за периодичности структуры, помимо направления распространения падающего луча, существуют различные другие выделенные направления, для которых волны, переизлучаемые атомами, находятся в фазе. Наличие таких направлений указывает на существование плоскостей, проходящих через большое количество точек кристаллической решетки, так называемых кристаллографических плоскостей.

Конструктивная интерференция возникает тогда, когда рассеянные лучи удовлетворяют равенству, называемому условием Вульфа – Брэгга:

2 d sin θ = n λ,

где d – расстояние между двумя кристаллографическими плоскостями, θ – угол между падающим лучом и кристаллографической плоскостью и n – любое целое число.

На опыте при использовании условия Вульфа – Брэгга положение кристалла остается неизменным по отношению к направлению пучка падающих рентгеновских лучей, а изменяется длина волны последних. Помещая на пути рассеянных рентгеновских лучей фотографическую пластину, ученые получают дифрактограмму, подобную приведенной здесь: светлые пятна соответствуют направлениям, для которых выполняется условие Вульфа – Брэгга. Этот метод был разработан Максом фон Лауэ (1879–1960) и принес ему Нобелевскую премию по физике 1914 года.

Независимо от направления кристаллографических плоскостей всегда существует такое значение длины волны излучения, которое позволяет удовлетворить условию Вульфа – Брэгга. Изучая дифрактограмму, мы можем найти расстояние d между кристаллографическими плоскостями и определить структуру кристалла, если она достаточно проста. В более сложных случаях необходимо не только определить сами направления конструктивной интерференции, где интенсивность излучения отлична от нуля, но и измерить величину последней.

Принцип дифракции рентгеновских лучей на кристаллахИсточник S испускает - фото 129

Принцип дифракции рентгеновских лучей на кристаллах.Источник S испускает рентгеновские лучи в направлении кристалла под углом θ к кристаллографическим плоскостям. Наблюдатель в точке O регистрирует интенсивность полученного луча. Две кристаллографические плоскости отстоят на расстояние d , которое соответствует условию Вульфа – Брэгга

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика повседневности. От мыльных пузырей до квантовых технологий»

Представляем Вашему вниманию похожие книги на «Физика повседневности. От мыльных пузырей до квантовых технологий» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика повседневности. От мыльных пузырей до квантовых технологий»

Обсуждение, отзывы о книге «Физика повседневности. От мыльных пузырей до квантовых технологий» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x