Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий

Здесь есть возможность читать онлайн «Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Альпина, Жанр: Физика, Прочая научная литература, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика повседневности. От мыльных пузырей до квантовых технологий: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика повседневности. От мыльных пузырей до квантовых технологий»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Физика повседневности. От мыльных пузырей до квантовых технологий — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика повседневности. От мыльных пузырей до квантовых технологий», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
10 Поверхность образованная мыльным пузырем между двумя параллельными - фото 87

10. Поверхность, образованная мыльным пузырем между двумя параллельными кольцами, называется катеноидом. Любое его продольное сечение вогнутое, и любое поперечное сечение (окружность) – выпуклое

Капающий кран

Оставим мыльные пузыри и вернемся к каплям, а точнее – ко всем знакомой ситуации: неплотно закрытый кухонный кран подтекает, роняя капли через регулярные промежутки времени (илл. 11). Их падение происходит очень быстро, и мы невооруженным глазом не можем различить детали – они доступны только высокоскоростной камере. Однако, и не имея такой камеры, бельгийский физик Жозеф Плато (1801–1883) в XIX веке сумел подробно проанализировать форму этих капель. Опытный экспериментатор решил устранить действие силы тяжести – тогда падающие капли будут двигаться достаточно медленно и за ними можно будет проследить невооруженным глазом. Вместо того чтобы ронять капли воды в воздухе, он использовал другую, не смешиваемую с водой, жидкость с плотностью, близкой к плотности воды (см. главу 6, врезку «Два эксперимента по следам Плато»). В этом случае действующая на капли выталкивающая сила Архимеда (глава 15) почти полностью компенсирует их вес. И все происходит так, как будто капли освободились от действия гравитации.

11 Неплотно закрытый кран подтекает Динамика образования капель сложна Ее - фото 88

11. Неплотно закрытый кран подтекает. Динамика образования капель сложна. Ее детально изучали в 1990-х годах

Таким образом, Плато смог наблюдать образование капель на выходе из крана. Оказалось, что между формирующейся каплей и краном образуется жидкая нить, которая постепенно становится все тоньше, и утончается до тех пор, пока капля не отделится. Интересно, что при этом на нити образуется сопроводительная вторичная капля, видимая, например, на последней фотографии на илл. 3. Этот «спутник», систематически возникающий при образовании капель, стал открытием Плато. Опишем еще одну его находку.

При вытекании из крана тонкой струи видно, что она остается непрерывной и цилиндрической только в верхней части. Ниже струя теряет свою регулярную форму, и человеческий глаз не в состоянии различить, что с ней происходит далее (см. главу 6, врезку «Два эксперимента по следам Плато»). Но мы можем догадаться. Цилиндрическая форма соответствует относительно большой поверхностной энергии струи. Следовательно, в целях минимизации своей поверхностной энергии струя рассыпается на множество небольших капель (илл. 11). Цилиндрическая струя оказывается неустойчивой! Это явление называется «неустойчивость Рэлея – Плато», поскольку его теория была разработана лордом Рэлеем (см. главу 3, «Цвет неба в хорошую погоду»).

Кривизна, средняя кривизна, цепочка и катеноид

В каждой своей точке кривая (при определенных условиях непрерывности, дифференцируемости и т. д.) характеризуется радиусом кривизны R . Последний определяется как радиус окружности, наилучшим образом приближающей эту кривую в выбранной точке. Соответственно, в каждой точке кривой можно определить и величину ее кривизны γ = 1/ R .

В свою очередь, поверхность в любой точке A (см. илл.) характеризуется двумя радиусами кривизны: R 1 и R 2 . Они соответствуют минимальным и максимальным значениям радиуса кривизны при сечении поверхности в этой точке плоскостью, проходящей через нормаль. Радиус кривизны считается положительным, если кривая в сечении выпуклая, и отрицательным, если она вогнутая (на рисунке R 2 < 0 и R 1 > 0). Среднюю кривизну γ определяют посредством отношения 2γ = 1/ R 1 + 1/ R 2 .

Необходимым и достаточным условием для того, чтобы поверхность была минимальной, оказывается требование, чтобы ее средняя кривизна в любой точке поверхности была равной нулю, то есть два основных радиуса кривизны должны быть равными по модулю, но иметь противоположные знаки.

Существует большое разнообразие минимальных поверхностей. Однако особую роль среди них занимают катеноиды. Читатель, обладающий некоторыми знаниями о дифференциальном исчислении, без особого труда докажет, что уравнение цепной линии определяется выражением y = αch ( kx ). Вращение цепной линии вокруг оси x порождает катеноид, который имеет нулевую среднюю кривизну. Можно также доказать, что именно эта поверхность соответствует устойчивой форме мыльной пленки, заключенной между двумя параллельными кольцами, при условии что они находятся достаточно близко друг к другу (илл. 10). Если же их развести достаточно далеко, то катеноид лопнет и останется два диска внутри колец.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика повседневности. От мыльных пузырей до квантовых технологий»

Представляем Вашему вниманию похожие книги на «Физика повседневности. От мыльных пузырей до квантовых технологий» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика повседневности. От мыльных пузырей до квантовых технологий»

Обсуждение, отзывы о книге «Физика повседневности. От мыльных пузырей до квантовых технологий» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x