10. Поверхность, образованная мыльным пузырем между двумя параллельными кольцами, называется катеноидом. Любое его продольное сечение вогнутое, и любое поперечное сечение (окружность) – выпуклое
Оставим мыльные пузыри и вернемся к каплям, а точнее – ко всем знакомой ситуации: неплотно закрытый кухонный кран подтекает, роняя капли через регулярные промежутки времени (илл. 11). Их падение происходит очень быстро, и мы невооруженным глазом не можем различить детали – они доступны только высокоскоростной камере. Однако, и не имея такой камеры, бельгийский физик Жозеф Плато (1801–1883) в XIX веке сумел подробно проанализировать форму этих капель. Опытный экспериментатор решил устранить действие силы тяжести – тогда падающие капли будут двигаться достаточно медленно и за ними можно будет проследить невооруженным глазом. Вместо того чтобы ронять капли воды в воздухе, он использовал другую, не смешиваемую с водой, жидкость с плотностью, близкой к плотности воды (см. главу 6, врезку «Два эксперимента по следам Плато»). В этом случае действующая на капли выталкивающая сила Архимеда (глава 15) почти полностью компенсирует их вес. И все происходит так, как будто капли освободились от действия гравитации.
11. Неплотно закрытый кран подтекает. Динамика образования капель сложна. Ее детально изучали в 1990-х годах
Таким образом, Плато смог наблюдать образование капель на выходе из крана. Оказалось, что между формирующейся каплей и краном образуется жидкая нить, которая постепенно становится все тоньше, и утончается до тех пор, пока капля не отделится. Интересно, что при этом на нити образуется сопроводительная вторичная капля, видимая, например, на последней фотографии на илл. 3. Этот «спутник», систематически возникающий при образовании капель, стал открытием Плато. Опишем еще одну его находку.
При вытекании из крана тонкой струи видно, что она остается непрерывной и цилиндрической только в верхней части. Ниже струя теряет свою регулярную форму, и человеческий глаз не в состоянии различить, что с ней происходит далее (см. главу 6, врезку «Два эксперимента по следам Плато»). Но мы можем догадаться. Цилиндрическая форма соответствует относительно большой поверхностной энергии струи. Следовательно, в целях минимизации своей поверхностной энергии струя рассыпается на множество небольших капель (илл. 11). Цилиндрическая струя оказывается неустойчивой! Это явление называется «неустойчивость Рэлея – Плато», поскольку его теория была разработана лордом Рэлеем (см. главу 3, «Цвет неба в хорошую погоду»).
Кривизна, средняя кривизна, цепочка и катеноид
В каждой своей точке кривая (при определенных условиях непрерывности, дифференцируемости и т. д.) характеризуется радиусом кривизны R . Последний определяется как радиус окружности, наилучшим образом приближающей эту кривую в выбранной точке. Соответственно, в каждой точке кривой можно определить и величину ее кривизны γ = 1/ R .
В свою очередь, поверхность в любой точке A (см. илл.) характеризуется двумя радиусами кривизны: R 1 и R 2 . Они соответствуют минимальным и максимальным значениям радиуса кривизны при сечении поверхности в этой точке плоскостью, проходящей через нормаль. Радиус кривизны считается положительным, если кривая в сечении выпуклая, и отрицательным, если она вогнутая (на рисунке R 2 < 0 и R 1 > 0). Среднюю кривизну γ определяют посредством отношения 2γ = 1/ R 1 + 1/ R 2 .
Необходимым и достаточным условием для того, чтобы поверхность была минимальной, оказывается требование, чтобы ее средняя кривизна в любой точке поверхности была равной нулю, то есть два основных радиуса кривизны должны быть равными по модулю, но иметь противоположные знаки.
Существует большое разнообразие минимальных поверхностей. Однако особую роль среди них занимают катеноиды. Читатель, обладающий некоторыми знаниями о дифференциальном исчислении, без особого труда докажет, что уравнение цепной линии определяется выражением y = αch ( kx ). Вращение цепной линии вокруг оси x порождает катеноид, который имеет нулевую среднюю кривизну. Можно также доказать, что именно эта поверхность соответствует устойчивой форме мыльной пленки, заключенной между двумя параллельными кольцами, при условии что они находятся достаточно близко друг к другу (илл. 10). Если же их развести достаточно далеко, то катеноид лопнет и останется два диска внутри колец.
Читать дальше
Конец ознакомительного отрывка
Купить книгу