Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий

Здесь есть возможность читать онлайн «Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Альпина, Жанр: Физика, Прочая научная литература, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика повседневности. От мыльных пузырей до квантовых технологий: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика повседневности. От мыльных пузырей до квантовых технологий»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Физика повседневности. От мыльных пузырей до квантовых технологий — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика повседневности. От мыльных пузырей до квантовых технологий», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Капля жидкости частично смачивает твердую поверхность На общей для всех трех - фото 83

Капля жидкости частично смачивает твердую поверхность

На общей для всех трех сред границе Γ на единицу ее длины действуют три силы: две из них, σ жт и σ тг , параллельны поверхности, третья, σ жг , направлена по касательной к поверхности капли (все они обозначены на иллюстрации красным цветом). Граница Γ должна оставаться на поверхности опоры. Поэтому для равновесия достаточно, чтобы сумма проекций сил на плоскость опоры была равна нулю, то есть:

σ тг = σ жг cos α + σ жт .

Это так называемое уравнение Дюпре – Юнга. Косинус угла контакта может изменяться от 1 до –1, что соответствует условию – σ жг < σ тг – σ жт < σ жг . При выполнении этого условия говорят, что имеет место частичное смачивание . Капля при этом образует сферический купол.

В случае когда σ тг – σ жт > σ жг , капля растекается до тех пор, пока это возможно, образуя при этом очень тонкую пленку. Это так называемый случай полного смачивания .

Если же σ тг < σ жт – σ жг , то капля отделяется от опоры, не смачивая ее совсем. Возможно, читателю приходилось видеть капельки ртути на столе около разбитого термометра (см. илл.) или скатывающиеся по перьям утки капельки воды – это примеры отсутствия смачивания.

Капли ртути не смачивают поверхность Маленькие капли имеют четкую сферическую - фото 84

Капли ртути не смачивают поверхность. Маленькие капли имеют четкую сферическую форму, большие – сплющены силой тяжести

Однако одного этого соотношения оказывается недостаточно для описания геометрической формы обоих пузырьков и границы между ними.

Недостающее геометрическое соотношение можно вывести, если вспомнить, что силы поверхностного натяжения, действующие в любой точке A окружности Γ, ограничивающей поверхность, должны уравновешивать друг друга (то есть их векторная сумма должна быть равна нулю). Этих сил всего три, каждая направлена по касательной к одной из сфер (1, 2 или 3), и они стремятся сжать соответствующие шаровые сегменты. Все три силы равны по модулю (который составляет отношение σ’ к единице длины). Таким образом, для достижения равновесия они должны попарно составлять между собой углы в 120° (илл. 8). Аналогичное рассуждение позволяет определить и форму капли на твердой плоскости (см. главу 6, врезку «Капля на поверхности»).

Пена образуется из очень большого количества пузырьков, однако ее структура определяется из тех же условий, которые мы использовали выше для двух пузырей.

8 Мыльные пузыри на плоской поверхности Углы образованные стенками - фото 85

8. Мыльные пузыри на плоской поверхности. Углы, образованные стенками, соединяющими между собой три пузырька, составляют 120°. В плотной пене шесть разделяющих плоскостей между четырьмя соприкасающимися пузырьками обладают симметрией тетраэдра: они образуют углы в 109,5°

Необычные мыльные пузыри

Необычные формы, которые могут принимать мыльные пузыри, далеко не ограничиваются одной сферой. Если мыльная пленка не свободна, а натянута на некоторую рамку, то она порой образует удивительные, кажущиеся невозможными фигуры! Давайте начнем с погружения двух одинаковых колец в мыльную воду. Приложив толику усердия и аккуратности, мы можем получить пузырь в форме цилиндра, накрытый с обеих сторон сферическими «шапками» (илл. 9). Перепад давления Δ P внутри и снаружи пузыря связан с радиусом цилиндра R по формуле, аналогичной формуле Лапласа, но без коэффициента 2:

Δ P = σ’/ R . (3)

9 Цилиндрический мыльный пузырь сформировавшийся между двумя кольцами Две - фото 86

9. Цилиндрический мыльный пузырь, сформировавшийся между двумя кольцами. Две сферические «шапки» замыкают пузырь

«Шапки» пузыря при этом являются сферическими сегментами радиуса 2 R, который определяется формулами (2) и (3). А что произойдет, если они лопнут? При этом исчезнет перепад давления внутри и снаружи мыльной пленки. В результате пленка между двумя кольцами, для того чтобы минимизировать поверхностную энергию, перестает быть цилиндрической и деформируется (илл. 10). Получающаяся в результате такой деформации поверхность приобретает форму лошадиного седла и называется катеноидом. С математической точки зрения это поверхность, которая формируется вращением цепной линии вокруг оси (цепная линия, в свою очередь, – это кривая такой формы, какую принимает подвешенная между двумя точками цепочка, например колье). При изменении формы рамки, независимо от ее геометрии, поверхность, принимаемая пленкой, всегда будет соответствовать минимуму ее площади (такая поверхность называется минимальной) (см. главу 6, врезку «Кривизна, средняя кривизна, цепочка и катеноид»).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика повседневности. От мыльных пузырей до квантовых технологий»

Представляем Вашему вниманию похожие книги на «Физика повседневности. От мыльных пузырей до квантовых технологий» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика повседневности. От мыльных пузырей до квантовых технологий»

Обсуждение, отзывы о книге «Физика повседневности. От мыльных пузырей до квантовых технологий» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x