Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий

Здесь есть возможность читать онлайн «Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Альпина, Жанр: Физика, Прочая научная литература, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика повседневности. От мыльных пузырей до квантовых технологий: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика повседневности. От мыльных пузырей до квантовых технологий»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Физика повседневности. От мыльных пузырей до квантовых технологий — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика повседневности. От мыльных пузырей до квантовых технологий», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
5 Схема мыльной пленки Молекулы поверхностноактивного вещества уменьшают - фото 79

5. Схема мыльной пленки. Молекулы поверхностно-активного вещества уменьшают поверхностное натяжение воды и тем самым препятствуют уничтожению мыльного пузыря. Гидрофильная головка обычно обладает электрическим зарядом и поэтому сильнее взаимодействует с молекулой воды, которая обладает электрическим дипольным моментом (см. главу 16, илл. 5)

Формула Лапласа

Откуда же берется избыточное давление Δ P , отличающее давление внутри мыльного пузыря от атмосферного? Для сферического мыльного пузыря радиусом R расчет прост. Поверхностная энергия равна произведению площади поверхности на поверхностное натяжение: S σ’ =R 2σ’, где σ’ = 2σ, то есть вдвое превышает поверхностное натяжение мыльной жидкости, так как пленка имеет две стороны. Небольшое увеличение радиуса пузырька δ R приводит к изменению поверхности на величину 8π R δ R и, следовательно, к изменению энергии поверхности на 8πσ’ R δ R (илл. 6). Это изменение энергии должно компенсироваться работой сил давления, приложенных к стенкам пузырька при увеличении его радиуса (работа силы равна энергии, переданной системе этой силой в процессе перемещения). Эта работа равна избыточному давлению Δ P , умноженному на изменение объема пузыря, то есть 4π RR Δ P . Поэтому мыльный пузырь радиусом R пребывает в равновесии тогда, когда давление воздуха внутри превышает атмосферное на

Δ P = 2σ’ /R. (2)

6 Изменение энергии вызванное бесконечно малым расширением пузырька должно - фото 80

6. Изменение энергии, вызванное бесконечно малым расширением пузырька, должно быть равно нулю в состоянии равновесия

Это соотношение называется формулой Лапласа, в честь физика, который вывел его в 1806 году (см. главу 5, «Высота приливов и их прогнозирование»). Избыточное давление Δ P тем больше, чем меньше пузырь. Вы легко можете проверить его справедливость, соединив два пузырька разного размера тонкой трубочкой: маленький пузырь тут же станет расти, а большой – уменьшаться!

Для миллиметрового пузыря значение избыточного давления составляет порядка одной тысячной от атмосферного. Для пузырька газа в воде σ’ = σ, и избыточное давление оказывается в два раза меньше, чем в мыльном пузыре того же радиуса.

Соприкасающиеся пузыри и пена

Воспользовавшись формулой Лапласа, мы можем предсказать, какую форму примет система из нескольких пузырьков в пене. Рассмотрим два пузыря радиусом R 1 и R 2 соответственно (илл. 7). Избыточное давление внутри каждого из них равно соответственно Δ P 1 = 2σ’/ R 1 и Δ P 2 = 2σ’/ R 2 . Мыльная пленка, разделяющая два этих пузырька, является сферической поверхностью, изгиб которой должен уравнивать разность давлений Δ P 2 и Δ P 1 . Таким образом, радиус R 3 определяется формулой (2), с R = R 3 в знаменателе и Δ P = Δ P 2 – Δ P 1 :

Физика повседневности От мыльных пузырей до квантовых технологий - изображение 81 7 Соприкосновение двух пузырей Плоскости касательные к поверхностям двух - фото 82

7. Соприкосновение двух пузырей. Плоскости, касательные к поверхностям двух пузырьков, должны иметь между собой и плоскостью, касательной к перегородке Γ, углы 120°, а радиусы пузырьков – удовлетворять соотношению 1/ R 3 = 1/ R 2 –1/ R 1 , где R 2 – радиус меньшего пузыря. В таком случае устанавливается равновесие между воздействующими на поверхность силами поверхностного натяжения F 1 и F 2 и силой поверхностного натяжения, возникающей на внутренней перегородке между пузырьками

Капля на поверхности

Какую форму принимает капля на твердом теле? В отличие от случаев контакта между двумя пузырями, где работает только поверхностное натяжение σ, сегодня ученые различают три типа межповерхностных натяжений: σ жг , σ жт , σ тг , которые соответствуют границам между жидкостью и газом, жидкостью и твердым телом, а также между твердым телом и газом. В зависимости от значений этих трех параметров капля в большей или меньшей степени растекается по поверхности. Степень этого «растекания» измеряется углом α между касательной к поверхности капли и плоскостью, на которой она лежит, в точке их соприкосновения (см. илл.).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика повседневности. От мыльных пузырей до квантовых технологий»

Представляем Вашему вниманию похожие книги на «Физика повседневности. От мыльных пузырей до квантовых технологий» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика повседневности. От мыльных пузырей до квантовых технологий»

Обсуждение, отзывы о книге «Физика повседневности. От мыльных пузырей до квантовых технологий» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x