Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий

Здесь есть возможность читать онлайн «Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Альпина, Жанр: Физика, Прочая научная литература, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика повседневности. От мыльных пузырей до квантовых технологий: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика повседневности. От мыльных пузырей до квантовых технологий»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Физика повседневности. От мыльных пузырей до квантовых технологий — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика повседневности. От мыльных пузырей до квантовых технологий», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Таким образом, суммируя все три слагаемых, находим, что масса положительного заряда, движущегося в жидком гелии, составляет 75 m 0 – значение, примерно равное величине, найденной при анализе экспериментов.

В приведенном выше рассуждении мы использовали концепции классической физики, которые без труда описывают движение положительных зарядов. Однако для отрицательных зарядов все оказывается гораздо сложнее…

А как устроен носитель отрицательного заряда?

Мы уже говорили, что жидкий гелий в равновесном состоянии не содержит свободных зарядов. Если ввести в него электрон принудительно, то последний станет причиной локальных потрясений. Чтобы рассказать об этом, сделаем отступление и поговорим об электронной структуре атомов. В квантовом мире существует важный закон: это принцип запрета Паули, который не позволяет находиться в одном и том же квантовом состоянии сразу двум электронам (см. главу 24, «Изотопический эффект и роль кристаллической решетки»). Например, у атома гелия имеются два различных состояния с одной и той же минимальной энергией, которые заняты двумя электронами. Имеются и другие энергетические состояния для электронов, но им соответствуют гораздо более высокие энергии (минимум 20 эВ), и они остаются незаполненными. Таким образом, создать ион He –, добавив в атом гелия третий электрон, оказывается делом невозможным. И все же, будучи разогнанными до сравнительно скромных энергий в 0,5 эВ, электроны проникают в толщу жидкого гелия!

Трое итальянских физиков, Дж. Карери, У. Фазоли и Ф. С. Гаэта, предположили, что при проникновении электрона в объем жидкого гелия последний вовсе не пытается «пристроиться» на свободный энергетический уровень в одном из атомов, «заплатив» за это 20 эВ. Нет, он просто остается самим собой, а окружающие атомы гелия раздвигает, создавая для себя полость и потратив на это всего лишь 0,5 эВ (илл. 3). Образовавшийся «пузырек» и является носителем отрицательного заряда.

Каков же радиус этого пузыря? Его размер обусловлен балансом между силами поверхностного натяжения и давления электрона на поверхность. С одной стороны, образование пузырька требует затратить энергию E 1 , которая тем выше, чем больше объем пузырька (поверхностная энергия, см. главу 6). С другой стороны, электрон в пузырьке непрерывно движется и обладает кинетической энергией E 2 , которая в силу принципа неопределенности тем выше, чем меньше сам пузырек. Радиус R пузырька будет таким, который минимизирует общую энергию E 1 + E 2 . Оценить энергии E 1 и E 2 просто. Первая величина равна E 1 = 4πσ R 2, где σ – известное нам поверхностное натяжение жидкого гелия. Энергию E 2 можно найти из принципа неопределенности (см. главу 22): согласно ему импульс электрона p = m e ν примерно составляет h/ R , поэтому кинетическая энергия E 2 = m e ν 2/2 оказывается порядка h 2/(2 m e R 2), где h – постоянная Планка, m e – масса электрона и ν – его скорость. Минимизируя общую энергию E 1 + E 2 , можно обнаружить, что в состоянии равновесия R 4= h 2/( m e /σ). Точный расчет дает для радиуса пузырька значение R = 2 нм. Собственной массы он практически не имеет, ведь масса электрона пренебрежимо мала по сравнению с присоединенной массой (см. главу 15, «Подъем пузырьков»: δ m = (2/3) πρ R 3, где ρ – плотность жидкого гелия при обычном давлении). Тут нужно заметить, что электрон, подобно иону He +, также поляризует атомы гелия вокруг пузырька, поэтому к δ m следовало бы добавить и массу «свиты», сопровождающей пузырек при его движении в электрическом поле. Однако ввиду его большого по сравнению со снежком радиуса эффект поляризации окружающего гелия слаб и соответствующая масса оказывается пренебрежимо малой по сравнению с присоединенной δ m = 245 m 0 , которая и определяет эффективную массу носителя отрицательного заряда в жидком гелии.

4 Изменение радиуса r носителя положительного заряда снежка и радиуса R - фото 330

4. Изменение радиуса r носителя положительного заряда («снежка») и радиуса R носителя отрицательного заряда («пузырька») в жидком гелии в зависимости от внешнего давления P 0

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика повседневности. От мыльных пузырей до квантовых технологий»

Представляем Вашему вниманию похожие книги на «Физика повседневности. От мыльных пузырей до квантовых технологий» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика повседневности. От мыльных пузырей до квантовых технологий»

Обсуждение, отзывы о книге «Физика повседневности. От мыльных пузырей до квантовых технологий» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x