ИТЭР: энергия XXII века?
Еще одна машина, в которой используются сверхпроводники, – это Международный экспериментальный термоядерный реактор ИТЭР (от англ. ITER, International Thermonuclear Experimental Reactor), который в настоящее время строится в Кадараше, недалеко от ущелья Вердон во Франции. ИТЭР предназначен для выработки энергии путем ядерного синтеза. Напомним, что реакция ядерного синтеза состоит в том, что при слиянии двух легких ядер (например, дейтерия 2H и трития 3H) образуется более тяжелое ядро. В процессе этой реакции, как и при делении тяжелых ядер (см. главу 13, «Как использовать ядерную энергию?»), высвобождается энергия. Для ядерного синтеза требуется очень высокая температура (100 000 000 K!); именно посредством слияния ядер вырабатывается энергия Солнца. Ионизированные частицы образуют «плазму» – горячий газ, который необходимо удержать в объеме камеры, не позволяя ему коснуться стенок. В случае ИТЭР такое удержание обеспечивается магнитным полем, воздействующим на движущиеся в тороидальной камере заряженные частицы (илл. 10). Словом, механизм тот же, что и в ускорителях частиц, таких как БАК. Однако в последнем пучок протонов очень узкий, а радиус их траекторий гигантский (порядка 10 км). Радиус реактора термоядерного синтеза намного меньше, и между тем объем, в котором необходимо удерживать плазму при нескольких сотнях миллионов градусов, все равно составляет 840 м 3.
9. Модель реактора ИТЭР, вид в разрезе. Он имеет высоту пятиэтажного здания, диаметр – около 30 м. В центре находится соленоид (обозначенный серым цветом), который разгоняет заряженные частицы. Красным показано 18 катушек тороидального поля, которые удерживают плазму в камере. Шесть дополнительных катушек (фиолетовые) полоидального поля (то есть направленного вдоль линий, проходящих через полюсы сферической системы координат) не позволяют раскаленной плазме соприкоснуться со стенками и обеспечивают ее стабильность. Для изготовления различных катушек в такой установке было затрачено более 500 т сверхпроводящего сплава Nb 3 Sn
ИТЭР представляет собой токамак (тороидальная камера с магнитными катушками), тип устройства, изобретенный в 1950-е годы двумя российскими физиками: Андреем Сахаровым (1921–1989) и Игорем Таммом (1895–1971). В первых токамаках использовались обычные электромагниты, которые потребляли огромное количество энергии. Необходимые для удержания плазмы магнитные поля порядка 10 Тл, то есть достаточно умеренны и позволяют для их создания использовать сверхпроводящие магниты, что обеспечивает значительную экономию энергии. Цель создания и введения в эксплуатацию ИТЭР – продемонстрировать возможность использования термоядерного синтеза как потенциального источника энергии. Конкретные результаты, то есть экономически эффективное и безопасное производство электроэнергии путем ядерного синтеза, ожидаются, по самым оптимистичным прогнозам, к 2040 году.
И будущие способы применения…
Расскажем о некоторых интересных идеях применения сверхпроводников помимо создания высоких магнитных полей. Например, возникающий вследствие эффекта Мейснера – Оксенфельда (см. предыдущую главу, «Эффект Мейснера – Оксенфельда») эффект левитации используется для создания движущихся на магнитной подушке высокоскоростных поездов – маглевов. Такие поезда парят над рельсами благодаря установленным в вагонах сверхпроводящим магнитам, взаимодействующим с магнитами, размещенными вдоль рельс на земле. Рекорд скорости принадлежит японскому маглеву, испытанному в 2015 году на экспериментальном участке пути между Токио и Нагоей. Во время испытаний поезд разогнался до 603 км/ч.
Другое применение сверхпроводников – это накопление энергии, что является важной задачей при использовании солнечных, ветряных и других электростанций, вырабатывающих энергию непостоянно (см. главу 13, «От теплового двигателя к электрическому»). В самом деле, избыточную энергию, накапливаемую во время пиков производства, следует каким-то образом хранить, а затем по мере потребности ее высвобождать. Одним из решений является генерирование тока в сверхпроводящей катушке. Накопленная электромагнитная энергия при этом составляет LI 2/2, где I – сила текущего в катушке тока и L – ее индуктивность. На данный момент практические применения этого способа хранения энергии сдерживают энергетические затраты, требуемые для охлаждения.
Читать дальше
Конец ознакомительного отрывка
Купить книгу