Классическое объяснение возникновения реактивной силы дал великий английский ученый Ньютон в третьем законе механики. Закон этот гласит: всякое действие встречает равное по величине и обратное по направлению противодействие.
В справедливости этого закона легко убедиться, припомнив несколько всем знакомых примеров: гребец, откидывая при помощи весел некоторые массы воды в одну сторону, заставляет тем самым двигаться лодку в противоположном направлении. Точно так же гребной винт, перемещая массы воды, заставляет идти корабль вперед.
Отметим одну особенность. В примере с лодкой «посредником» между лодкой, человеком и водой являются весла. Этот «посредник» в технике называется движителем. Им будет являться также гребное колесо парохода, гребной винт, пропеллер самолета, гусеница трактора и т. д. (Не следует путать термин движитель с двигателем. В приведенных примерах — на лодке — двигателем будет человек, на пароходе — машина, на самолете — мотор и т. д.) Постараемся запомнить эти примеры, в особенности роль «посредника» — движителя. С ним нам скоро придется встретиться.
Пример, иллюстрирующий третий закон механики, который мы привели выше, не единственный. Оказывается, что в соответствии с упомянутым законом можно получить движение и без движителя.
Вы выстрелили из ружья, пороховые газы вытолкнули заряд из ствола, а сила реакции, или реактивная сила, оттолкнула назад ваше ружье, т. е. она создала тягу, перемещающую ружье в обратную сторону движения пороховых газов. Эту тягу мы называем силой отдачи, под действием которой приклад ружья толкает нас при выстреле в плечо. Теперь возьмем ту же лодку и представим себе, что вы закрепили ваше ружье на ее корме, направив ствол в обратную сторону носа лодки, и оно непрерывно стреляет. Естественно, что после каждого нового выстрела под действием силы отдачи, т. е. реактивной силы, ружье, а вместе с ним и лодка, до сих пор стоявшая на месте, толчками будет двигаться вперед. Пока хватит запасов зарядов, ваша лодка будет двигаться. Такой принцип движения называется реактивным, а двигатели, построенные на этом принципе, т. е. вызывающие движение непосредственно, без движителя, называются двигателями прямой реакции.
Проверить действие реактивной силы можно также с помощью простого опыта. Если вы, встав лицом к корме, начнете бросать в воду камни, как толкают физкультурники ядро, то убедитесь в том, что лодка будет двигаться в сторону, обратную полету камня. Причем можно заметить, что чем большую скорость вы придаете камням при бросании, тем быстрее будет двигаться лодка.
На основании приведенных выше примеров нетрудно понять и физический смысл возникновения реактивной силы, образуемой в ракетном двигателе при выбросе из его сопла в окружающее пространство газов. Возникающие от сгорания топлива газы мгновенно расширяются и давят на стенки и дно камеры сгорания. Но так как выход для них расположен как раз против дна камеры сгорания, то вся сила давления газов сосредоточивается на нем.
Таким образом, образовавшиеся в камере сгорания ракетного двигателя газы как бы отталкиваются от ее дна и с огромной силой толкают ракету вперед, образуя так называемую тягу ракеты, в то же время сами газы выбрасываются через сопло с огромной скоростью наружу, т. е. в противоположную сторону движения ракеты. Отсюда видно, что если горючее и кислород, необходимый для его сгорания, запасены на ракете, то она может двигаться и в безвоздушном пространстве.
Все видели сигнальные ракеты или ракеты, применяющиеся для фейерверка. Они-то и являются прообразом ракет, которые полетят в космос.
Основным препятствием для космических полетов служит земное притяжение. Для того чтобы его преодолеть и выйти в пространство, где начнет преобладать притяжение планеты, на которую мы летим, нужны колоссальные количества энергии. Даже для запуска спутника весом 45 кг на орбиту, удаленную от Земли на расстояние 300–500 км, необходимо затратить энергию, соответствующую 4–5 дням работы Днепрогэса. На первый взгляд это может показаться неосуществимым. Однако уже во время второй мировой войны немецкие ракеты «Фау-2», бомбардировавшие Лондон, имели двигатель мощностью 500 000 л. с., работавший, правда, всего около одной минуты. Сейчас ракеты такого типа значительно усовершенствованы, и мощности, которые развивают их двигатели, значительно выше и измеряются миллионами лошадиных сил.
В чем же заключается особенность этих двигателей невиданной мощности? Чем они отличаются от всех известных паровых машин или дизелей?
Читать дальше