Это свойство маятника оказалось не только удивительным, но и полезным. Галилей предложил использовать маятник в качестве регулятора в часах. Во времена Галилея часы приводились в действие грузом, а для регулировки хода применялось грубое приспособление типа лопастей ветряной мельницы, которое использовало сопротивление воздуха. Для отсчета равных промежутков времени можно было бы использовать маятник, ибо малые колебания совершаются за то же время, что и большие, вызываемые случайными порывами ветра. Столетие спустя после Галилея часы с маятниковым регулятором вошли в обиход, но мореплаватели по-прежнему нуждались в точных часах для измерения долготы на море. Была объявлена премия за создание таких морских часов, которые позволяли бы измерять время с достаточной точностью. Премию получил Гариссон за хронометр, в котором для регулирования хода использовались маховое колесо (баланс) и специальная пружина.
Это свойство независимости периода колебаний маятника от амплитуды носит мудреное название изохронность — от греческого слова «изохронный», означающий «равновременный». Мы говорим, что движение маятника при малых амплитудах (приблизительно) изохронно. Это свойство заслуживает специального названия, ибо оно оказалось весьма ценным.
В приведенной ниже задаче 1 проводятся рассуждения, позволяющие перейти от маятника к другим системам, в которых совершаются изохронные колебания. Задача довольно сложная, но ее стоит попытаться решить, ибо она может служить примером задач по теоретической физике. Разбор задачи покажет вам, как от простого опытного факта перейти к предсказанию новой области технических знаний. Если вы успешно справились с «анализом движения маятника», проведенным в задаче 1 , значит, вы сможете подыскать и другие системы, которые совершают изохронные колебания и еще больше подходят для регулирования хода часов.
Действительно, революция в измерении времени, началом которой послужило предложение Галилея, продолжается. Она прошла путь от больших часов с маятником до карманных и наручных часов с балансом и спиральной пружиной, колеблющихся кристаллов кварца, а теперь в качестве нового этапа — колебательных и вращательных движений самих атомов.
Закончите «теоретический анализ» колебаний маятника [155], который проведен ниже.
Задача 1
Опыт показывает, что при малых амплитудах период колебаний Т практически не зависит от амплитуды. Анализируя движение маятника, мы будем ограничиваться только малыми амплитудами. При удвоении амплитуды период колебания маятника Т остается неизменным, хотя груз проходит вдвое большее расстояние. Следовательно, чтобы амплитуда стала вдвое больше, груз должен двигаться быстрее.
Скорость движения не постоянна, даже ускорение не остается постоянным. Однако изменение скорости груза происходит одинаково при разных амплитудах, поэтому мы можем высказать предположение, что, будучи неодинаковой на разных стадиях отклонения, скорость груза на соответствующих стадиях движения с удвоенной амплитудой должна быть больше, чем скорость движения с первоначальной амплитудой, иначе Т не оставалось бы неизменным.
Задача 2
Отважившись на обобщение рассуждений, проведенных в задаче 1 , мы должны ожидать, что при любых (малых) амплитудах скорости на соответствующих стадиях колебания связаны с амплитудой колебания следующим образом: ___
Задача 3
Вернемся к задаче 1 , где сравнивались колебания, амплитуда которых отличаются вдвое. Поскольку удвоение амплитуды равносильно увеличению соответствующих скоростей ___ и поскольку груз приобретает эти скорости за один и тот же промежуток времени [156], его ускорение Δ v /Δ t при удвоенной амплитуде должно быть ___ больше, чем при колебании с первоначальной амплитудой. (Опять-таки ускорение не остаётся постоянным, но мы сравниваем ускорения на соответствующих стадиях колебания.)
Задача 4
Обобщая рассуждения в задаче 3 , можно сказать, что соотношение между ускорением (на любой выбранной стадии колебания) и амплитудой должно выглядеть следующим образом: ___.
Задача 5
Хотя в конце отклонения груз не движется, он обладает наибольшим (направленным к вертикали) ускорением. Это ускорение обусловлено совместным действием силы тяжести и силы, приложенной к грузу со стороны нити. Эти силы в сумме дают результирующую силу F , направление которой совпадает с направлением движения. Из задачи 4 представляется правдоподобным, что результирующая сила, действующая на груз в конце отклонения, должна быть связана с амплитудой А следующим образом [157]: ___
Читать дальше