Если вы понимаете смысл третьего закона, а часто его понимают неправильно и даже неправильно излагают в учебниках, то, пожалуй, сможете пользоваться им не хуже самого Ньютона.
Мощный инструмент для решения задач
Теперь вы видите, каким мощным инструментом может служить закон сохранения количества движения при решении задач. Если в системе происходят какие-то явления, то между одной частью системы и другой ее частью могут возникать многочисленные внутренние силы, но они появляются в виде пар равных и противоположно направленных сил (третий закон Ньютона). Поэтому они не могут изменить результирующего количества движения. Мы можем проводить расчеты общего характера, не зная о внутренних деформациях и перемещениях и не заботясь о них. Когда мы делим нашу систему на две части, например при рассмотрении столкновения, и говорим, что количество движения, приобретенное одной частью, должно быть отнято у другой, нам не нужно ничего знать о силах, которыми обусловлен этот обмен количеством движения . Эти силы представляют собой пары равных и противоположно направленных сил действия и противодействия. Они являются источником равных и противоположно направленных количеств движения независимо от того, постоянны эти силы или быстро возрастают и снова убывают по величине, возникают эти силы при внезапном столкновении или в результате слабого гравитационного притяжения, приводит действие этих сил к колебаниям молекул (теплота), закручиванию пружин (потенциальная энергия) или полному восстановлению первоначальной энергии движения. Так, если пуля вылетает с большой скоростью из ружья и попадает в деревянный брусок, лежащий на абсолютно гладком столе, то скорость скольжения бруска (вместе с пулей) можно вычислить, зная массы и первоначальную скорость пули и предполагая, что количество движения сохраняется. Для расчета не нужно знать в деталях, что происходило с пулей. Как правило, пуля пробивает древесные волокна, разрывая их, в результате чего температура волокон повышается, и в конце концов вся энергия движения пули растрачивается, превращаясь в теплоту. Если пуля ударится о кусок металла, находящийся внутри деревянного бруска, то пуля нагреется сама и может расплавиться. Внутрь деревянного бруска можно поместить приспособление, которое захватывало бы пулю так, чтобы при этом энергия ее движения расходовалась на сжатие пружины или вызывала вращение небольшого колеса. В любых случаях конечная скорость бруска будет одной и той же при условии, что пуля застревает в нем.
Столкновение и «соприкосновение» — слово, которое вводит в заблуждение
Толкните навстречу друг другу две тележки, стоящие на рельсовом пути «без трения» (фиг. 204).
Фиг. 204. Столкновения.
а— удар; б— пружинные буфера; в— взаимное отталкивание магнитов.
Тележки будут двигаться с постоянными скоростями, пока не произойдет столкновение, сопровождающееся ударом; затем после очень кратковременного соприкосновения тележки отскакивают одна от другой, обладая другими скоростями, но с тем же самым суммарным количеством движения. Если снабдить тележки буферами из хороших стальных пружин, то столкновение будет более продолжительным и мы сможем подробно изучить его отдельные стадии. Конечные скорости, которыми обладают тележки, оттолкнувшись друг от друга, могут быть больше, чем при столкновении, но количество движения опять-таки сохраняется. Количество движения сохраняется на любой промежуточной стадии столкновения: оно равно суммарному количеству движения тележек перед началом столкновения. Во время столкновения, когда тележки максимально сближаются и пружины сжаты сильнее всего, тележки и пружины движутся все вместе с одной и той же скоростью; эту скорость можно вычислить, поскольку известны общая масса и суммарное количество движения. Мы могли бы приспособить какую-нибудь защелку для сцепления тележек в этот момент, измерить скорость сцепленных тележек и проверить наш расчет. Это может служить проверкой закона сохранения количества движения. Именно это мы и делали в демонстрационном опыте со сталкивающимися тележками, о котором говорилось в начале этой главы (стр. 310). Сделаем теперь «столкновение» еще более мягким — поместим на каждой тележке по большому магниту так, чтобы они отталкивали друг друга. Тогда при сближении тележек магниты, подобно пружине, будут отталкивать друг друга все сильнее и сильнее. Тележки разъедутся в противоположные стороны, не соприкоснувшись, а количество движения при этом опять-таки сохранится. На первый взгляд кажется, что здесь не было настоящего столкновения. Тем не менее в действительности — это типичное столкновение, модель жесткого столкновения, при котором оба тела приходят в контакт, только эта модель выполнена в большом масштабе, с замедленным движением сталкивающихся тел. При столкновении любого типа (магниты, пружины, соприкосновение при ударе) на определенной стадии сближения сталкивающихся тел развиваются равные и противоположно направленные силы, которые «расталкивают» оба тела в противоположные стороны и действуют до тех пор, пока тела снова не удалятся одно от другого.
Читать дальше