Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила

Здесь есть возможность читать онлайн «Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1969, Издательство: Мир, Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика для любознательных. Том 1. Материя. Движение. Сила: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика для любознательных. Том 1. Материя. Движение. Сила»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Физика для любознательных. Том 1. Материя. Движение. Сила — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика для любознательных. Том 1. Материя. Движение. Сила», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если вы понимаете смысл третьего закона, а часто его понимают неправильно и даже неправильно излагают в учебниках, то, пожалуй, сможете пользоваться им не хуже самого Ньютона.

Мощный инструмент для решения задач

Теперь вы видите, каким мощным инструментом может служить закон сохранения количества движения при решении задач. Если в системе происходят какие-то явления, то между одной частью системы и другой ее частью могут возникать многочисленные внутренние силы, но они появляются в виде пар равных и противоположно направленных сил (третий закон Ньютона). Поэтому они не могут изменить результирующего количества движения. Мы можем проводить расчеты общего характера, не зная о внутренних деформациях и перемещениях и не заботясь о них. Когда мы делим нашу систему на две части, например при рассмотрении столкновения, и говорим, что количество движения, приобретенное одной частью, должно быть отнято у другой, нам не нужно ничего знать о силах, которыми обусловлен этот обмен количеством движения . Эти силы представляют собой пары равных и противоположно направленных сил действия и противодействия. Они являются источником равных и противоположно направленных количеств движения независимо от того, постоянны эти силы или быстро возрастают и снова убывают по величине, возникают эти силы при внезапном столкновении или в результате слабого гравитационного притяжения, приводит действие этих сил к колебаниям молекул (теплота), закручиванию пружин (потенциальная энергия) или полному восстановлению первоначальной энергии движения. Так, если пуля вылетает с большой скоростью из ружья и попадает в деревянный брусок, лежащий на абсолютно гладком столе, то скорость скольжения бруска (вместе с пулей) можно вычислить, зная массы и первоначальную скорость пули и предполагая, что количество движения сохраняется. Для расчета не нужно знать в деталях, что происходило с пулей. Как правило, пуля пробивает древесные волокна, разрывая их, в результате чего температура волокон повышается, и в конце концов вся энергия движения пули растрачивается, превращаясь в теплоту. Если пуля ударится о кусок металла, находящийся внутри деревянного бруска, то пуля нагреется сама и может расплавиться. Внутрь деревянного бруска можно поместить приспособление, которое захватывало бы пулю так, чтобы при этом энергия ее движения расходовалась на сжатие пружины или вызывала вращение небольшого колеса. В любых случаях конечная скорость бруска будет одной и той же при условии, что пуля застревает в нем.

Столкновение и «соприкосновение» — слово, которое вводит в заблуждение

Толкните навстречу друг другу две тележки, стоящие на рельсовом пути «без трения» (фиг. 204).

Фиг 204 Столкновения а удар б пружинные буфера в взаимное - фото 188

Фиг. 204. Столкновения.

а— удар; б— пружинные буфера; в— взаимное отталкивание магнитов.

Тележки будут двигаться с постоянными скоростями, пока не произойдет столкновение, сопровождающееся ударом; затем после очень кратковременного соприкосновения тележки отскакивают одна от другой, обладая другими скоростями, но с тем же самым суммарным количеством движения. Если снабдить тележки буферами из хороших стальных пружин, то столкновение будет более продолжительным и мы сможем подробно изучить его отдельные стадии. Конечные скорости, которыми обладают тележки, оттолкнувшись друг от друга, могут быть больше, чем при столкновении, но количество движения опять-таки сохраняется. Количество движения сохраняется на любой промежуточной стадии столкновения: оно равно суммарному количеству движения тележек перед началом столкновения. Во время столкновения, когда тележки максимально сближаются и пружины сжаты сильнее всего, тележки и пружины движутся все вместе с одной и той же скоростью; эту скорость можно вычислить, поскольку известны общая масса и суммарное количество движения. Мы могли бы приспособить какую-нибудь защелку для сцепления тележек в этот момент, измерить скорость сцепленных тележек и проверить наш расчет. Это может служить проверкой закона сохранения количества движения. Именно это мы и делали в демонстрационном опыте со сталкивающимися тележками, о котором говорилось в начале этой главы (стр. 310). Сделаем теперь «столкновение» еще более мягким — поместим на каждой тележке по большому магниту так, чтобы они отталкивали друг друга. Тогда при сближении тележек магниты, подобно пружине, будут отталкивать друг друга все сильнее и сильнее. Тележки разъедутся в противоположные стороны, не соприкоснувшись, а количество движения при этом опять-таки сохранится. На первый взгляд кажется, что здесь не было настоящего столкновения. Тем не менее в действительности — это типичное столкновение, модель жесткого столкновения, при котором оба тела приходят в контакт, только эта модель выполнена в большом масштабе, с замедленным движением сталкивающихся тел. При столкновении любого типа (магниты, пружины, соприкосновение при ударе) на определенной стадии сближения сталкивающихся тел развиваются равные и противоположно направленные силы, которые «расталкивают» оба тела в противоположные стороны и действуют до тех пор, пока тела снова не удалятся одно от другого.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика для любознательных. Том 1. Материя. Движение. Сила»

Представляем Вашему вниманию похожие книги на «Физика для любознательных. Том 1. Материя. Движение. Сила» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика для любознательных. Том 1. Материя. Движение. Сила»

Обсуждение, отзывы о книге «Физика для любознательных. Том 1. Материя. Движение. Сила» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x