Магнитное отталкивание начинает ощущаться на довольно больших расстояниях и сильно возрастает на малых расстояниях между телами. Насколько тележки должны приблизиться друг к другу, чтобы направление их движения изменилось под действием взаимного отталкивания магнитов, зависит от начальных скоростей. В широком интервале скоростей взаимного отталкивания магнитов оказывается вполне достаточно.
Когда тела при столкновении приходят в соприкосновение, сопровождающееся ударом, возникают такие же силы, но на значительно меньших расстояниях. Это «близкодействующие» атомные силы, которые практически равны нулю, пока атомы на поверхности одного тела не приблизятся к атомам на поверхности другого тела на очень малое расстояние, значительно меньшее диаметра молекул. Тогда-то и появляются большие силы отталкивания, которые становятся еще значительнее при более тесном сближении [132]. Это и есть соприкосновение тел, внезапное появление сил отталкивания на очень малом расстоянии между телами. «Прикосновения» одного атома к другому не происходит. В масштабе атомов существуют лишь силовые поля, которые отталкивают и притягивают атомы или части атомов, причем интенсивность этих полей резко меняется с расстоянием. Нажмите пальцем на стол, и вы почувствуете, как атомы стола начнут отталкивать атомы вашего пальца, когда палец окажется на очень близком расстоянии от поверхности стола. Как бы сильно или слабо вы ни прижимали палец к столу, вы испытываете лишь небольшое отталкивание, которое передается мышечной ткани пальца и воздействует на нервные окончания [133].
Помимо больших сил, которые, как об этом говорилось выше, развиваются на очень малых расстояниях, между пальцем и столом нет никакого «соприкосновения», или «контакта», — эти термины вызывают отчетливое и в то же время ошибочное представление. Ваш палец, наделенный чувством осязания, напоминает своего рода щуп, который инженеры, занимающиеся исследованиями конструкций, называют «тензодатчиком».
Для иллюстрации столкновений можно предложить другой способ. Заменим тележки катящимися шарами и не будем создавать силы отталкивания, а заставим шары вкатываться вверх по склону соответствующего профиля. На фиг. 205 показаны такие склоны для трех случаев, которые мы только что рассмотрели.
Фиг. 205. Потенциальный барьер.
Симметричный потенциальный барьер соответствует случаю двух одинаковых шариков, сближающихся с одинаковыми скоростями. Одна шар можно поместить на оси симметрии, а другой изобразить катящимся по направлению к первому.
Обратите внимание, что в случае жесткого удара склон оказывается очень крутым, но это не вертикальная стена. (Кривые, описывающие профили этих склонов, называются потенциальными диаграммами , потому что высота склона в каждой точке характеризует потенциальную энергию, запасаемую пружиной, магнитным полем или полем атомных сил во время столкновения, см. гл. 26 [134]. Такие потенциальные диаграммы, или потенциальные барьеры, очень полезны при рассмотрении столкновений в ядерной физике. В случае сил притяжения потенциальный барьер превращается в потенциальную яму . На фиг. 206 показана потенциальная яма, создаваемая полем тяготения Земли, а на фиг. 207 — потенциальная яма для случая атомного ядра с потенциальным барьером снаружи.)
Фиг. 206. Потенциальная яма для случая поля тяготения Земли.
Орбита Луны показана в масштабе 1/100 миллиардов.
Фиг. 207. Потенциальная яма и потенциальный барьер для случая атомного ядра.
Таким образом, все столкновения по существу одинаковы. Различие заключается в форме силового поля и не нарушает общего подхода, основанного на законе сохранения количества движения. Все силовые поля, с которыми мы имеем дело в физике, по-видимому, действуют с одинаковыми и противоположно направленными силами: таковы гравитационные силы притяжения, электрические силы отталкивания и притяжения, магнитные силы (которые, как мы считаем, возникают при движении электрических зарядов), а также молекулярные и атомные силы, которые, согласно нашим представлениям, имеют электрическую природу. Пока нам известно очень немногое о ядерных силах.
Читать дальше