Питер Эткинз - Десять великих идей науки. Как устроен наш мир.

Здесь есть возможность читать онлайн «Питер Эткинз - Десять великих идей науки. Как устроен наш мир.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Физика, Биология, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Десять великих идей науки. Как устроен наш мир.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Десять великих идей науки. Как устроен наш мир.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе. Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.

Десять великих идей науки. Как устроен наш мир. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Десять великих идей науки. Как устроен наш мир.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 711Несколько первых энергетических уровней и соответствующих им волновых - фото 85

Рис. 7.11.Несколько первых энергетических уровней и соответствующих им волновых функций для маятника. Заметим, что уровни энергии разделены равными интервалами. Вы также можете заметить, что форма волновой функции с наименьшей энергией не похожа на формы, которые мы предполагаем у волновых функций с высокими энергиями (как, например, на рис. 7.5), поскольку маятник вероятнее всего обнаружить вблизи нулевого смещения от вертикали, а не у точек возврата. Мы можем пользоваться классическими идеями для конструирования наших представлений о волновых функциях лишь для высоких энергий.

Теперь, вот удивительная черта. Предположим, что мы оттягиваем груз и отпускаем его. Он будет раскачиваться в некотором диапазоне энергий, возможно, из-за толчков молекул воздуха или неровности подставки. Поэтому его реальная волновая функция будет волновым пакетом, сформированным суперпозицией большого числа функций, подобных изображенным на иллюстрации. Волновой пакет прокатывается из стороны в сторону, двигаясь быстрее, когда маятник вертикален, и медленнее на краях размаха качаний, так же как классический маятник. Более того, и это удивительно, частота качаний — число качаний груза из стороны в сторону за секунду — в точности равна параметру частоты , появляющемуся в выражении для интервалов между квантовыми энергетическими уровнями. Поэтому, когда вы наблюдаете качание маятника, вы не только видите движение волнового пакета, вы видите также, наблюдая частоту, прямое отображение в высшей степени близко расположенных энергетических уровней. Другими словами вы непосредственно наблюдаете квантование. Маятник является мощным усилителем для интервалов между его квантовыми энергетическими уровнями, и когда вы наблюдаете однометровый маятник, качающийся туда-сюда, вы непосредственно наблюдаете энергетический интервал в триста триллионно-триллионно-триллионных джоуля. Я думаю, что это удивительно.

Главным выводом из этого обсуждения является то, что квантование естественно вытекает из уравнения Шредингера и что классическое поведение возникает, когда точный квантовый уровень неизвестен, и мы должны формировать волновой пакет.

Я украдкой ввернул в обсуждение слово, являющееся центральным для проблемы интерпретации квантовой механики, слово вероятность . В оставшейся части этой главы мы исследуем скрытые смыслы и следствия этого ускользающего слова, поскольку оно имеет глубокую значимость для способа, посредством которого мы думаем о мире. На самом деле я хочу вернуться к некоторым аспектам текущего обсуждения и попытаться извлечь из них несколько философских вопросов. Я колебался, не следует ли написать «эпистемологических и онтологических вопросов», то есть вопросов, связанных с природой знания и фундаментальных основ реальности. Именно такими они и окажутся, но я не философ, и не хочу создавать впечатления, что мои замечания сколько-нибудь претендуют на статус философских. Поэтому я решил написать просто «вопросов» и оставить все как есть.

Хотелось бы сделать еще одно замечание. Предшествующий материал этой главы включает в себя все, что вам в действительности необходимо знать, если вы хотите пользоваться квантовой механикой. Конечно, я оставил в стороне технические и математические детали, но все, что сказано до сих пор, является достаточно содержательным и бесспорным. Те 30 процентов экономики США, которые основаны на квантовой механике, являются результатом использования этого материала, открывающего глаза на природу происходящего. Квантовая механика становится интересной с философской точки зрения, когда мы начинаем спрашивать, что все это означает? Это и станет темой оставшейся части главы. Если вы остановитесь здесь, вы будете знать главные положения квантовой механики и, в принципе, сможете использовать ее для произведения некоторых вычислений; если вы продолжите чтение, ваши возможности пользоваться ею не увеличатся, но вы узнаете, почему люди находят ее столь глубоко озадачивающей.

Сначала я обращусь к принципу неопределенности и попытаюсь оправдать подзаголовок этой главы: упрощение понимания. Многие люди — и среди них отцы-основатели квантовой механики — считают, что принцип неопределенности ограничивает наше понимание мира, ибо, поскольку мы не можем знать положение и импульс частицы одновременно, нам доступно лишь неполное знание ее состояния. Этот пессимистический взгляд, по моему мнению, является следствием нашей культурной обусловленности. Классическая физика и наш непроизвольный повседневный опыт воспитали в нас веру в то, что вещи мира полностью описываются в терминах положений и импульсов. То есть, чтобы описать путь летящего мяча — или просто предугадать, когда по нему следует ударить, — нам необходимо оценить его положение и импульс в каждый момент. Что нам демонстрируют квантовая механика и, в частности, принцип неопределенности, так это то, что это ожидание, ожидание описания в терминах обоих атрибутов, является чрезмерным . Мир просто не соответствует ему. Квантовая механика говорит нам, что мы должны выбрать. Мы должны выбрать между обсуждением мира в терминах положений частиц и обсуждением мира в терминах импульсов частиц. Другими словами, нам следует говорить только о положении мяча или только об его импульсе. Именно в этом смысле принцип неопределенности является главным упрощением нашего описания мира, поскольку он показывает, что наши классические ожидания ложны; мир просто не похож на картинку, рисуемую классической физикой и непроизвольным повседневным опытом.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Десять великих идей науки. Как устроен наш мир.»

Представляем Вашему вниманию похожие книги на «Десять великих идей науки. Как устроен наш мир.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Джеймс Чейз - Так устроен мир
Джеймс Чейз
Отзывы о книге «Десять великих идей науки. Как устроен наш мир.»

Обсуждение, отзывы о книге «Десять великих идей науки. Как устроен наш мир.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x