е p = mgd. (Уравнение 7.6)
Если вся кинетическая энергия тела была преобразована в потенциальную энергию, то значит — первоначальная e k конвертировалась в эквивалентную e, или, объединив уравнения 7.5 и 7.6, получим:
½∙ mv 2= mgd,
упростив это выражение и приняв предположение, что величина g — постоянна, получаем:
v 2= 2gd = 19,6d. (Уравнение 7.7)
Из этого соотношения можно вычислить (пренебрегая сопротивлением воздуха) высоту, до которой поднимется объект, если нам известна его начальная скорость, то есть та, с которой он двигается вверх. Те же самые соотношения могут быть получены из уравнений, которые явились результатом экспериментов Галилео Галилея с падающими объектами.
Кинетическая энергия и потенциальная энергия — это типы энергии, которые используются механизмами, созданными при помощи рычагов, наклонных плоскостей и колес, а потому эти две формы могут быть объединены одним общим понятием — «механическая энергия». Уже во времена Лейбница было признано, что существует своего рода понятие «сохранения механической энергии» и что (если отбросить такие внешние коэффициенты, как трение и сопротивление воздуха) механическая энергия могла бы быть визуализирована в виде движения вперед и назад между кинетической и потенциальной формами или между ними и работой, но не (и это справедливо для всех трех форм) как нечто, появляющееся из ниоткуда или исчезающее в никуда.
К сожалению, «закон сохранения механической энергии», внешне — такой аккуратный, как это могло бы показаться при некоторых ограниченных обстоятельствах, имеет свои дефекты, и они сразу выбрасывают его из стройного ряда истинных законов сохранения.
Объект, подброшенный в воздух с некоторой кинетической энергией, возвращается на землю, не обладая той кинетической энергией, которая была у него сначала. Небольшое количество ее теряется на преодоление сопротивления воздуха. Опять же если упругий объект падает с некоторой данной высоты, то он должен был бы (в случае, если механическая энергия полностью сохраняется) сильно удариться и вернуться точно на свою первоначальную высоту. Однако этого не происходит. Он всегда возвращается на высоту несколько меньшую первоначальной, и если позволить ему падать снова и снова, то с каждым разом высота его отскока будет уменьшаться, пока не исчезнет вообще. Это зависит не только от сопротивления воздуха, которое, конечно, тоже вносит свою лепту, но также и от несовершенной эластичности непосредственно самого тела. Действительно, если бросить вниз глыбу мягкой глины, ее потенциальная энергия будет преобразована в кинетическую, но в момент, когда глина ударится о землю с «жестким» шлепком, вся кинетическая энергия пропадет без всякого перехода в потенциальную форму. Судя по всему, в таких случаях механическая энергия просто исчезает.
Можно было бы доказывать, что эти потери механической энергии происходят из-за «несовершенства» окружающей среды. Если предположить, что абсолютно гладкая система двигается в абсолютном вакууме или что все объекты абсолютно упругие, то механическая энергия была бы сохранена.
Однако такой спор абсолютно бесполезен, поскольку в истинном законе сохранения дефекты окружающего, реального мира не затрагивают сущность закона. Количество движения, например, сохраняется независимо от трения, сопротивления воздуха, несовершенной эластичности или любого другого отклонения от идеала.
Если мы все еще хотим найти закон сохранения, который вовлекает работу, мы должны иметь в виду, что на каждую потерю механической энергии должно появиться какое-либо увеличение чего-то еще. Такое «кое-что» совсем не трудно найти. Трение — один из наиболее очевидных дефектов окружающей среды — вызывает повышение температуры, то есть нагрев, и, если трение значительно, вызываемое им количество теплоты также значительно. (Температура спичечной головки может быть доведена до точки загорания за одну секунду простым движением по грубой, шершавой поверхности.)
Справедливо и обратное — теплота весьма способна к тому, чтобы ее превратили в механическую энергию. Теплота Солнца поднимает бесчисленные тонны километров водяного пара высоко в воздух, так что вся механическая энергия падения воды (такая, как дождь, водопад или спокойное течение плавной реки) происходит от теплоты, отдаваемой Солнцем.
Читать дальше