Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Здесь есть возможность читать онлайн «Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2006, Издательство: Центрполиграф, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Популярная физика. От архимедова рычага до квантовой механики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Популярная физика. От архимедова рычага до квантовой механики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Популярная физика. От архимедова рычага до квантовой механики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если мы выразим силу как ma, то мы получим:

w = mad. (Уравнение 7.2)

Значительно раньше, в этой книге, когда мы обсуждали эксперименты Галилео с падающими телами, мы показали, что v = at, то есть скорость, другими словами, является произведением ускорения на время. Это выражение можно легко преобразовать в t = v/a. Также при обсуждении экспериментов Галилео мы заметили, что там, где имеется однородное ускорение,

d = ½at 2 ,

где d — расстояние, покрытое перемещающимся телом. Если вместо t в указанном выше отношении мы подставим v/a, то получим:

d = ½∙a(v/a) 2= ½∙v 2/a. (Уравнение 7.3)

Давайте теперь подставим это значение для d в уравнение 7.2, которое тогда примет форму:

w = ½∙mav 2/a = ½∙mv 2. (Уравнение 7.4)

Это — работа, которую следует приложить к телу массой m, чтобы заставить его двигаться со скоростью v. И поэтому это — кинетическая энергия, которую содержит тело такой массы, двигающееся с такой скоростью. Если мы обозначим кинетическую энергию как e k, то можем написать:

e k = ½∙mv 2. (Уравнение 7.5)

Как я уже сказал ранее, единицы измерения работы включают в себя единицы измерения массы, умноженные на квадрат единиц измерения скорости, и, как видно из уравнения 7.5, кинетическая энергия — тоже. Поэтому кинетическая энергия, как и работа, может быть измерена в джоулях или эргах. И действительно, все формы существования энергии могут быть измерены в этих единицах.

Теперь представим себе, что мы можем обосновать закон сохранения, в котором кинетическая энергия может быть преобразована в работу и наоборот, но в котором сумма кинетической энергии и работы в любой изолированной системе должна остаться постоянной. Но такой закон сохранения не выдержит, как будет показано ниже, никакой критики.

Объект, брошенный в воздух, по мере того как он покидает руку (или катапульту, или некое орудие), приобретает некоторую скорость и поэтому некоторую кинетическую энергию. Поскольку он поднимается вверх, его скорость уменьшается, из-за ускорения, наложенного на него полем тяготения Земли. Значит, и его кинетическая энергия постоянно уменьшается, и в конечном счете, когда объект достигает максимальной высоты и останавливается, его кинетическая энергия полностью исчезает — становится равной нулю. Можно бы было предположить, что кинетическая энергия исчезла из-за того, что в атмосфере была произведена работа и что поэтому кинетическая энергия была переведена в работу. Однако это — неадекватное объяснение события, поскольку то же самое происходило бы и в вакууме. Далее: можно было бы предположить, что кинетическая энергия исчезла полностью и без следа, то есть без появления работы, и что поэтому нет возможности применить какой-либо закон сохранения, включающий в себя работу и энергию. Однако после того как объект достиг максимальной высоты и скорость его движения стала равна нулю, он снова начинает падать, теперь уже вниз, все еще находясь под действием силы тяготения. Он падает все быстрее и быстрее, приобретая все большую кинетическую энергию, и в тот момент, когда он ударяется о землю (сопротивлением воздуха мы пренебрегаем), он обладает всей той кинетической энергией, с которой начал свое движение.

Чтобы не потерять свой шанс обосновать закон сохранения, мне кажется разумным предположить, что энергия, наверное, не исчезала при движении объекта вверх, а просто запасалась в некоторой другой форме, чем кинетическая энергия. Для того чтобы поднять объект на некоторую высоту, преодолевая силу тяжести, требуется выполнить некоторую работу, даже несмотря на то, что, когда объект достиг этой высоты, он остановился. Эта работа должна быть запасена в виде энергии, которую объект содержит в себе и которая основывается на его положении по отношению к полю тяготения земли.

Таким образом, можно сказать, что по мере подъема объекта кинетическая энергия постепенно преобразовывалась в «энергию положения». На максимальной высоте вся кинетическая энергия стала такой «энергией положения». По мере падения объекта назад, вниз «энергия положения» еще раз преобразовалась — обратно в кинетическую энергию. Так как «энергия положения» имеет потенциальность кинетической энергии, то шотландский инженер Уильям Дж.М. Ранкин (1820–1872) в 1853 году предложил назвать такую энергию «потенциальной», и это предложение было принято.

Чтобы поднять тело на некоторое расстояние (d) вверх, требуется приложить силу, равную его весу, на требуемом расстоянии. Сила, приложенная весом, равна mg, где m — масса тела, a g — ускорение свободного падения (см. уравнение 5.1). Если мы обозначим потенциальную энергию как e p, то получим:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Популярная физика. От архимедова рычага до квантовой механики»

Представляем Вашему вниманию похожие книги на «Популярная физика. От архимедова рычага до квантовой механики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики»

Обсуждение, отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x