Для того чтобы привести тело, находящееся в состоянии покоя, в поступательное движение, требуется приложить к нему силу. Но при некоторых условиях сила может вместо этого вызвать вращательное движение тела. Предположим, например, вы прибили гвоздем один конец доски к деревянному основанию. Если вы теперь толкнете доску, то она не будет двигаться в поступательной манере движения, так как один конец ее закреплен. Вместо этого доска начнет совершать вращательное движение вокруг зафиксированного конца.
Сила, которая вызывает такое вращательное движение, называется крутящим моментом («torque» — от латинского слова, означающего «вращать»). Если мы продолжим использовать греческие буквы для обозначения элементов вращательного движения, мы можем обозначить крутящий момент греческой буквой τ («tau» — «тау»), которая является эквивалентом латинской буквы «t» (от латинского «torque» — очевидно).
Данная сила не всегда вызывает тот же самый крутящий момент. В случае упомянутой доски величина крутящего момента зависит от расстояния между точкой, к которой приложена сила, и фиксированной точкой. Сила, приложенная непосредственно к фиксированной точке, не будет вызывать крутящий момент. По мере отступа от этой точки данная сила произведет все более быстрое вращение и поэтому вызовет все больший и больший крутящий момент. Фактически крутящий момент равен силе (f), умноженной на расстояние (r):
τ = fr. (Уравнение 6.5)
В прошлом о крутящем моменте говорили как о «моменте силы», но эта фраза теперь вышла из употребления. Крутящий момент может быть вызван не только в случае, когда какая-то часть тела зафиксирована в пространстве, но даже тогда, когда все тело способно свободно перемещаться.
Рассмотрим тело, обладающее массой, но состоящее из одной-единственной точки. Такое тело может подвергнуться только поступательному движению. Вращающееся тело, в конце концов, крутится относительно некоторой точки (или линии); если эта точка — все, что существует, и нет ничего еще, что могло бы вращаться, возможно только линейное движение. Зато к таким точечным массам наиболее просто применить законы движения.
Однако в реальной Вселенной не существует никаких точечных масс. Все реальные тела, обладающие массой, могут расширяться. Однако можно показать, что в некоторых случаях такие реальные тела ведут себя так, как будто вся их масса сконцентрирована в какой-то одной точке. Точка, в которой эта кажущаяся концентрация может быть найдена, называется «центром масс» тела. Если тело симметрично по форме и однородно по плотности или имеет плотность, которая изменяется симметричным образом, центр массы совпадает с геометрическим центром тела. Например, Земля, по существу, сферическое тело, но в то же время оно неравномерно плотно, плотность Земли — наибольшая в центре, и эта плотность уменьшается одинаково во всех направлениях, по мере приближения к поверхности. Центр масс Земли поэтому совпадает с ее геометрическим центром, и именно к этому центру и направлена сила тяжести.
Концепция центра масс может объяснять несколько вещей, которые иначе могли быть достаточно озадачивающими. Согласно ньютоновскому первому закону движения, объект, находящийся в движении, продолжает перемещаться с постоянной скоростью, если на него не воздействовать некоторой внешней силой. Предположим, что снаряд, содержащий взрывчатое вещество, перемещается через пространство с постоянной скоростью и что в некоторой точке он взрывается. Фрагменты снаряда разлетаются во всех направлениях, и различные химические продукты взрыва также расширяются по различным направлениям вовне. Этот взрыв является внутренней силой, однако, будучи одним из фрагментов в пределах рассматриваемой системы, согласно первому закону он не должен оказывать никакого эффекта на движение системы. Все же различные фрагменты снаряда больше не перемещаются с первоначальной скоростью. Что же — сломались ньютоновские законы движения?
Нисколько. Законы описывают систему в целом и совсем не обязательно должны подходить к той или иной ее части, рассмотренной в изоляции от других. В результате взрыва система изменила свою форму. Но изменил ли взрыв центр масс системы? Центр масс мог бы рассматриваться как «средняя точка» тела. Если одна часть снаряда брошена наружу, то это сбалансировано другой частью, брошенной в противоположном направлении. Чтобы быть более точным, согласно закону сохранения импульса векторная сумма всех импульсов в одном направлении должна быть равна векторной сумме всех импульсов в противоположном направлении. Можно показать, что независимо от того, как изменилась форма тела под действием внутренних силы, центр масс остается там, где он и находился до того, как произошло изменение формы. Другими словами, центр масс системы перемещается с постоянной скоростью независимо от взрыва, который расшвырял частицы системы туда и сюда.
Читать дальше