Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Здесь есть возможность читать онлайн «Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2006, Издательство: Центрполиграф, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Популярная физика. От архимедова рычага до квантовой механики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Популярная физика. От архимедова рычага до квантовой механики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Популярная физика. От архимедова рычага до квантовой механики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Обратите внимание, что вышеприведенные значения сопротивляемости верны для температуры 0 °C. Эти значения меняются с возрастанием температуры у металлов в сторону возрастания. Так, электроны, двигаясь сквозь проводник, обязательно встречают атомы вещества, которые преградят им движение, и некоторая часть электрической энергии потеряется при преодолении препятствий. Эта потеря энергии происходит из-за сопротивляемости вещества. Если температура проводника возрастает, то атомы проводника вибрируют быстрее (см. ч. I), и электронам становится труднее проходить; следовательно, сопротивляемость увеличивается. (Сравните, к примеру, свои собственные ощущения: насколько легче продираться сквозь толпу спокойно стоящих людей, чем через толпу, где все снуют туда-сюда.)

Если известна сопротивляемость при 0 °С (ρ 0), то она увеличивается на некоторую часть этой величины (ρ 0αt) с каждым градусом повышения температуры (t). Следовательно, увеличение сопротивляемости для каждой заданной температуры — ρ 0αt. Общая сопротивляемость при этой температуре (ρ t), следовательно, равняется сопротивляемости при 0 °C плюс увеличение, или:

ρ t= ρ 0+ ρ 0 αt = ρ 0( 1 + αt). (Уравнение 11.5)

Постоянная α, показывающая увеличение сопротивляемости при каждом градусе, называется температурным коэффициентом сопротивляемости.

Пока температурный коэффициент сопротивляемости остается неизменным, реальное сопротивление отдельного проводника изменяется по мере изменения температуры очень простым образом. Соответственно сопротивление тугоплавких металлов заданных размеров позволяет добиваться больших температур.

Что касается полупроводников, температурный коэффициент сопротивляемости для них отрицательный, то есть их сопротивляемость уменьшается с увеличением температуры. Причиной этому является то, что при повышении температуры материала жесткость удержания электронов в атоме ослабевает; большее количество электронов получает возможность двигаться и переносить заряд. Возросшее количество доступных электронов преодолевает дополнительное сопротивление, производимое активнее вибрирующими атомами, поэтому общая сопротивляемость падает.

Если бы температурный коэффициент сопротивляемости действительно был постоянен, то следовало бы ожидать, что при температурах, близких к абсолютному нулю, и сопротивляемость упадет до нуля. Однако при низких температурах сопротивляемость медленно уменьшается, и зависимость, по которой понижается сопротивление с понижением температуры, такова, что в начале XX века физики были уверены, что сопротивление металла упадет до нуля только при абсолютном нуле температуры, и ни на йоту раньше. Это казалось здравым рассуждением, ведь только при абсолютном нуле температуры полностью прекратится вибрирование атомов и исчезнут любые препятствия для движения электронов.

Однако изменение реальных сопротивлений при температурах, близких к абсолютному нулю, стало возможно только после того, как голландский физик Хейке Камерлинг-Оннес (1853–1926) смог в 1908 году получить жидкий гелий. Среди всех веществ у гелия самая низкая температура плавления, 4,2 °К, и только в среде из жидкого гелия изучение сверхнизких температур становится возможным.

В 1911 году Камерлинг-Оннес установил, к своему удивлению, что сопротивляемость ртути, которая по мере понижения температуры становилась все меньше и меньше по предсказуемому графику, вдруг резко упала до нуля при температуре 4,16 °К.

Ряд других металлов тоже продемонстрировал свойство сверхпроводимости при температуре жидкого гелия. Есть некоторые сплавы, которые становятся сверхпроводящими при температурах, близких к температуре плавления водорода. Сплав ниобия и олова становится сверхпроводящим уже при температуре 18,1 °К.

Другие же, например титан, становятся сверхпроводящими только при температурах ниже 0,39 °К. Хотя было найдено уже около 900 веществ, которые обнаруживают свойства сверхпроводимости при температурах около абсолютного нуля, остается еще множество веществ (включая являющиеся при обычных температурах хорошими проводниками, например серебро, медь и золото), которые до сих пор пока не продемонстрировали сверхпроводимости ни при каких температурах, даже самых низких из испробованных.

Электроэнергия

Для поддержания электрического тока при сопротивлении требуется энергия. Необходимое количество энергии напрямую зависит от количества общего тока при сопротивлении, также зависит и от силы тока. Так как при заданном сопротивлении сила тока напрямую зависит от разности потенциалов (согласно закону Ома), то можно сказать, что энергия заданного электрического тока равна количеству передаваемого заряда, умноженного на разность потенциалов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Популярная физика. От архимедова рычага до квантовой механики»

Представляем Вашему вниманию похожие книги на «Популярная физика. От архимедова рычага до квантовой механики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики»

Обсуждение, отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x