Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Здесь есть возможность читать онлайн «Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2006, Издательство: Центрполиграф, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Популярная физика. От архимедова рычага до квантовой механики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Популярная физика. От архимедова рычага до квантовой механики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Популярная физика. От архимедова рычага до квантовой механики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
R = E/I. (Уравнение 11.1)

Это закон Ома. Из этой формулы, путем перестановки данных, закон Ома может быть записан как I = E/R и Е = IR.

Сопротивление изменяется, как нетрудно догадаться, в омах, то есть проводник имеет сопротивление 1 Ом, если при разности потенциалов 1 В сила тока равна 1 А. Из уравнения 11.1 мы видим, что 1 Ом можно представить как 1 В на 1 А.

В некоторых случаях удобнее рассматривать электрическую проводимость материала, чем сопротивление. Электрическая проводимость — величина, обратная сопротивлению. Единица измерения электропроводимости была представлена (по причуде ученых) как Мо, то есть Ом наоборот.

Проводник с сопротивлением 1 Ом имеет электропроводимость 1/ 1или 1 Мо. Сопротивление, равное 3 Ом, соответствует электропроводимости 1/ 3Мо, сопротивление, равное 100 Ом, соответствует электропроводимости 1/ 100Мо и т. д. Если представить электропроводимость как С, то из уравнения 11.1 получаем:

С = I/R = I/E. (Уравнение 11.2)

Таким образом, 1 Мо — то же самое, что 1 А на 1 В.

При любых условиях сопротивление зависит от длины и диаметра проводника (кроме других параметров). В целом сопротивление изменяется прямо пропорционально длине (L) и обратно пропорционально площади поперечного сечения (А) проводника. Таким образом, сопротивление пропорционально зависимости L/A. Если представить эту зависимость как постоянную ρ (греческая буква «ро»), то можно сказать, что

R = ρL/A, (Уравнение 11.3)

где ρ — удельное сопротивление. Каждое вещество имеет собственное удельное сопротивление.

Преобразовав уравнение 11.3 для нахождения удельного сопротивления, мы получим

ρ = RA/L. (Уравнение 11.4)

В системе МКС единица измерения R — Ом, А — квадратный метр (м 2), a L — метр. Единица измерения ρ соответственно Ом-квадратные метры на метр, или, сократив уравнение, ом-метры.

Чем лучше проводник, тем ниже сопротивляемость. Самым лучшим из известных проводников является серебро, которое про температуре 0 °C имеет сопротивляемость около 0,00000000152, или 1,52∙10 –12ом∙м. Медь достаточно близка к нему — 0,0000000154, далее идут золото и алюминий с сопротивляемостью, равной соответственно 0,0000000227 и 0,0000000263 Ом∙м. В целом металлы имеют низкую сопротивляемость и, как следствие, являются отличными проводниками.

Даже сопротивляемость нихрома, сплава никеля, железа и хрома, составляющая всего лишь 0,000001 Ом∙м, считается необычно высокой для металлов. Сопротивляемость металлов так мала потому, что их атомная структура такова, что каждый атом имеет один или два свободно движущихся, удаленных от ядра электрона. Поэтому заряд может легко переходить от атома к атому с этими электронами [102] Движение электронов — это не то же самое, что электрический ток. Электроны движутся с определенной не очень высокой скоростью, но сила, приводящая их в движение, движется гораздо быстрее. Если выстроить шашки в ряд и щелкнуть еще по одной шашке так, чтобы она ударилась об этот ряд с одного края, то она ударится о ряд шашек и остановится (может быть, даже слегка отскочит). Шашки, в которые она ударится, останутся приблизительно на своем месте, но крайняя шашка с другой стороны отскочит, продолжая движение шашки, по которой щелкнули. Сами шашки почти не двигались, но момент силы передался по лилии шашек со скоростью, которая зависит от эластичности материала, из которого эти шашки сделаны. Таким же образом, независимо от реальной скорости электронов, электрическая сила передается сквозь любое вещество со скоростью света. .

Вещества, электроны в атомах которых прочно «присоединены» к ядру, обладают очень высокой сопротивляемостью. Даже при огромных разностях потенциалов в них может возникнуть ток лишь очень небольшой силы. Вещества, обладающие сопротивляемостью свыше миллиона ом-метров, вообще не способны проводить ток. Древесина клена имеет сопротивляемость 300 млн. Ом∙м, стекло — около триллиона, сера — около квадриллиона, а кварц — около 500 квадриллионов Ом∙м.

Помимо проводников, сопротивляемость которых очень низка, и изоляторов, сопротивляемость которых очень высока, существует группа веществ, которые характеризует сопротивляемость средней силы, выше, чем у нихрома, но ниже, чем у древесины. Наиболее известные примеры — элементы германий и кремний. Сопротивляемость германия — 2 Ом∙м при 0 °С, а кремния — 30 000. Такие вещества, как германий и кремний, называют полупроводниками.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Популярная физика. От архимедова рычага до квантовой механики»

Представляем Вашему вниманию похожие книги на «Популярная физика. От архимедова рычага до квантовой механики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики»

Обсуждение, отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x