Его ассистент, Фарадей, продолжил изучение электролиза и показал, что количество вещества, выделяющееся при электролизе, прямо пропорционально электрическому заряду, который прошел через устройство. Его законы электролиза, которые будут детально рассмотрены в III части, способствовали формированию атомистического взгляда на материю, который предложил английский химик Джон Дальтон (1766–1844). В течение следующего столетия ученые, опираясь на эти законы, открыли электрон и установили внутреннее устройство атома.
Благодаря исследованиям Фарадея кулон можно более понятным образом определить не только через общее количество заряда или общее количество электричества (точную цифру которых иногда сложно установить), но и через количество тока, приводящее к химической реакции определенного объема (а это определяется очень просто). Например, заряд в один кулон, пропущенный через раствор серебра, приводит к выделению 1,18 мг металлического серебра.
Особенно интересует химиков выделение серебра массой 107,87 г — это то, что они называют «вес серебра в грамм-атомах». Следовательно, их интересует, сколько кулонов необходимо для получения 107,87 г серебра. Но это равняется 107,870 мг. Разделим это на 1,18 мг (количество серебра, которое выделяется при 1 кулоне). Получаем 95 500 — искомое число кулонов. Это число принимают за 1 фарад тока.
Один кулон электричества выделяет определенное количество серебра (или производит другую химическую реакцию определенного объема) независимо от скорости прохождения тока через раствор. Но вот скорость выделения серебра зависит от количества кулонов, которое проходит через раствор в единицу времени. Естественно поэтому говорить о мощности потока (или о силе тока) как о количестве кулонов в секунду. Один кулон в секунду равняется одному амперу, в честь Андре Мари Ампера (1775–1836), чья работа будет описана ниже. Итак, ампер — это единица силы тока.
И тогда, если ток, проходя через раствор, образует 1,18 мг металла каждую секунду, мы говорим, что через раствор проходит 1 ампер тока.
Сила тока между точками А и В зависит от разности потенциалов между ними. Если при разности потенциалов 20 вольт между этими точками возникает ток силой 1 ампер, то при разности потенциалов 40 вольт возникает ток силой 2 ампера, а при разности потенциалов 10 вольт — 0,5 ампера.
Прямая зависимость между разностью потенциалов и силой тока верна только при передаче тока по определенному проводнику при определенных условиях. Если природа проводника меняется, то и зависимость между разностью потенциалов и силой тока меняется.
Например, с увеличением длины проводника (при постоянной разности потенциалов) сила тока уменьшается. Так, если в проволоке длиной 1 м при разности потенциалов 20 В возникает ток силой 1 А, то при той же разности потенциалов в проволоке такой же толщины, но длиной 2 м возникает ток силой 0,5 А.
С другой стороны, при увеличении толщины проволоки сила тока, возникающего в ней, также увеличивается пропорционально увеличению площади поперечного сечения, или, что тоже верно, пропорционально квадрату диаметра проволоки. Если в проволоке толщиной 1 мм при разности потенциалов 20 В возникает ток силой 1 А, то при увеличении толщины проводника до 2 мм (при постоянной разности потенциалов) возникает ток силой 4 А.
Кроме того, очень важно, по какому веществу проходит ток. Если в медной проволоке при разности потенциалов 20 В возникает ток силой 3 А, то в золотой проволоке такой же длины и толщины и с такой же разностью потенциалов возникает ток силой 2 А, а в вольфрамовой проволоке при тех же условиях — 1 А. В кварцевом волокне такой же длины и толщины возникнет ток силой 0,00000000000000000000003 А — такой маленький, что его почти не существует.
Все эти законы и правила открыл немецкий физик Георг Симон Ом (1787–1854). В 1826 году он высказал предположение, что сила тока, возникающего и проходящего на данном участке под воздействием данной разницы потенциалов, зависит от сопротивления проводящего материала; увеличение длины проводника в 2 раза приводит к увеличению сопротивления в 2 раза; увеличение диаметра в 2 раза приводит к уменьшению сопротивления в 4 раза; замена вольфрама на медь приводит к уменьшению сопротивления и т. д.
Сопротивление можно рассматривать как отношение между разностью потенциалов и силой тока. Если записать разность потенциалов («электродвижущую силу») как Е, силу тока как I, а сопротивление как R, то можно сказать, что
Читать дальше