Круг научных интересов Георгия Ивановича отличался широтой, его теоретическая работа по распаду струи была одной из первых в отечественной литературе, а в последующие годы он внес серьезный вклад в прикладную газодинамику, теорию электрической плазмы, проблемы Тунгусского метеорита... Обладая большой человеческой притягательностью, он возглавил и много лет успешно руководил коллективом замечательных, квалифицированных и способных научных работников.
Рождение капли
После бесед с Георгием Ивановичем Петровым и чтения классических работ Рэлея у меня возник острый интерес к проблеме распада жидких струй. «Вот мы охотимся за каплей. А как она возникает? Не вылетают же капли из форсунки как дробь из ружья».
В самом деле, как происходит это «обыкновенное чудо», которое, впрочем, никого не волнует, кроме нескольких гидромехаников, исследующих проблемы устойчивости движения. Почему вообще струя распадается на капли? Текла бы себе до ближайшего препятствия, расползаясь по поверхности тонкой пленкой. Впервые на вопрос этот в 1878 году ответил с позиций математической физики знаменитый английский ученый Рэлей (1842—1919). Он положил начало целому направлению в гидродинамике, которое сейчас, с появлением реактивной техники, переживает второе рождение.
Работа Рэлея базируется на том факте, что струя всегда испытывает возмущения, вызванные вибрациями, отклонениями стенок от правильных геометрических форм, их шероховатостью и т. п. Если возмущения эти начнут увеличиваться, впадины волн — углубляться, гребни — расти, струя оказывается неустойчивой относительно малых колебаний, а волна становится будущей каплей; иными словами, волна должна отделиться от струи в виде частицы с диаметром, примерно равным длине волны (рис. 9). Решение Рэлея показало, что струя неустойчива и что амплитуды коротких и длинных волн растут с разной скоростью в зависимости от их длины. Но есть самая «легкая на подъем» так называемая оптимальная длина волны λ опт, имеющая максимум роста среди всех других. Она примерно равна 4,5 диаметра струи. Рэлей принял естественную гипотезу, что диаметр капли определяется величиной именно этой волны. Опыты хорошо подтвердили теорию. Правда, результат Рэлея касался частного случая — неподвижного цилиндра невязкой жидкости; в реальности этому соответствует медленное течение из чуть приоткрытого крана. Искровые фотографии круглой струи показали, что с ростом скорости истечения все усложняется, изменяется форма колебаний от симметричных к антисимметричным (см. рис. 9). Длина неустойчивых волн, а с ней и размеры капель уменьшаются; из массы волн начинает резко вырываться уже не одна, а две или несколько. И вот самое существенное: вместо одинаковых капель возникает их целый спектр разных размеров.
Мне захотелось внимательней присмотреться к распаду пелены центробежной форсунки, пользуясь ее большими масштабами и задав малые скорости истечения. К этому времени нас, занимавшихся реактивной тематикой, перевели из ЦАГИ в другой институт. Круг проблем и объем работы возросли, коллектив расширился, строились новые установки и стенды.
Руководителем одной из больших научных лабораторий стал видный ленинградский профессор из Политехнического института А. А. Гухман, специалист по термодинамике.
Александр Адольфович Гухман читал лекции в Московском авиационном институте. Их стали посещать и некоторые наши сотрудники. Многие чувствовали потребность глубже вникнуть в классические науки, не полностью понятые когда-то на вечерних факультетах, без отрыва от производства. Мы все время пользовались формулами технической термодинамики, но иные считали ее скучноватой, формальной.
Обычно инженер, научный работник в прикладной области имеет дело с конструкцией, ему нужно представить конкретную модель происходящего там явления, а еще лучше нарисовать ее на бумаге. Он хочет ощутить силовое взаимодействие потоков и тел. А тут какие-то общие начала термодинамики, невидимый каркас, в который вроде все вписывается и о который все время стукаешься.
Термодинамика изучает общие свойства, не зависящие от характера внутренних взаимодействий, и отвлекается от конкретной игры сил. Шла молва, что лекции Гухмана — образец глубины и красоты. Поэт термодинамики? Иные недоумевали, но, прослушав его раз, уже не пропускали ни одной лекции до конца курса. «В семье наук,— говорил Гухман,— классическая термодинамика как старая властная тетка: во все вмешивается, ее недолюбливают, но она всегда права. Почему же наряду с необходимым уважением ей часто отказывают в должной любви? Чего ей не хватает — логики, стройности, строгости? Нет, все эти атрибуты эстетики познания налицо. Отсутствует другое — доступный физический смысл некоторых ее понятий и особенно ключевого— энтропии. Будучи наукой структурно-описательной, классическая термодинамика не связывает понятия с механизмом явления».
Читать дальше