История создания квантовой механики сохранила для нас несколько живых воспоминаний, которые помогают представить ту обстановку напряжения и подъема, в которой люди разных национальностей, возрастов и темпераментов всего за три года построили современное здание квантовой механики.
Быть может, все началось с того, что в конце мая 1925 года Вернер Гейзенберг заболел сенной лихорадкой и по совету своего тогдашнего руководителя Макса Борна уехал отдыхать на остров Гельголанд в Балтийском море. Там у него было время проделать подробные вычисления, без которых не удавалось разрешить давно мучившую его идею. Уже 5 июня, по возвращении из отпуска, он написал о своих вычислениях Кронигу, а 24 июня — подробное письмо Паули, в котором содержалось начало будущей матричной механики. Правда, математическая культура Гейзенберга уступала глубине его физических идей: он не знал даже, что величины, которые он тогда ввел, в математике уже давно известны под названием матриц. Поэтому сформулировать теорию Гейзенберга математически строго удалось лишь с помощью Макса Борна и совсем молодого тогда Паскуаля Иордана. Уже в июле они завершили в Геттингене построение матричной механики.
Независимо от них в Кембридже ту же задачу решил Поль Дирак, который летом 1925 года на семинаре у Петра Леонидовича Капицы слушал доклад Гейзенберга, посетившего Англию вскоре после выздоровления.
С помощью этой новой математики осенью того же года Вольфганг Паули нашел уровни энергии атома водорода и доказал, что они совпадают с уровнями атома Бора.
В то же лето Гаудсмит и Уленбек предложили гипотезу о спине электрона, Луи де Бройль окончательно разработал идею о волнах материи, а Эльзассер и Эйнштейн посоветовали объяснить с помощью этих теорий эксперименты Дэвиссона и Кенсмена по отражению электронных пучков от поверхности металлов.
Волновая механика родилась год спустя, весной 1926 года. Ее встретили недоверчиво, поскольку в ней явно отсутствовали квантовые скачки — то, к чему лишь недавно и с большим трудом привыкли и что считалось главной особенностью атомных явлений.
В июне 1926 года Гейзенберг приехал в Мюнхен навестить родителей и «…пришел в совершенное отчаяние», услышав на одном из семинаров доклад Эрвина Шредингера и его интерпретацию квантовой механики.
Споры о волновой механике продолжались часами и днями и достигли предельной остроты в сентябре 1926 года, когда Шредингер приехал по приглашению Бора в Копенгаген.
Шредингер настолько устал от дискуссий, что даже заболел и несколько дней провел в доме Бора, который в течение всей болезни гостя почти не отходил от его постели.
Время от времени, характерным жестом подняв палец, Нильс Бор повторял:
— Но, Шредингер, вы все-таки должны согласиться… Однажды почти в отчаянии Шредингер воскликнул:
— Если мы собираемся сохранить эти проклятые квантовые скачки, то я вообще сожалею, что имел дело с атомной теорией!
— Зато остальные весьма признательны вам за это, — ответил ему Бор.
С течением времени точки зрения сторонников матричной и волновой механик сближались. Сам Шредингер доказал их математическую эквивалентность, а Макс Борн летом 1926 года догадался, какой физический смысл следует приписать ψ-функции Шредингера.
Опыты по дифракции электронов, ставшие известными осенью 1926 года, сильно укрепили веру в теории де Бройля и Шредингера. Постепенно физики поняли, что дуализм «волна-частица» — это экспериментальный факт, который следует принять без обсуждений и положить его в основу всех теоретических построений.
Теперь ученые старались понять, к каким следствиям приводит этот факт и какие ограничения он накладывает на представления об атомных процессах. При этом они сталкивались с десятками парадоксов, понять смысл которых зачастую не удавалось.
В ту осень 1926 года Гейзенберг жил в мансарде физического института в Копенгагене. По вечерам к нему наверх поднимался Бор, и начинались дискуссии, которые часто затягивались за полночь. «Иногда они заканчивались полным отчаянием из-за непонятности квантовой теории уже в квартире Бора за стаканом портвейна, — вспоминал Гейзенберг. — Однажды после одной такой дискуссии я, глубоко обеспокоенный, спустился в расположенный за институтом Фэллед-парк, чтобы прогуляться на свежем воздухе и немного успокоиться перед сном. Во время этой прогулки под усеянным звездами ночным небом у меня мелькнула мысль, не следует ли постулировать, что природа допускает существование только таких экспериментальных ситуаций, в которых… нельзя одновременно определить место и скорость частицы».
Читать дальше