Взятые по отдельности понятия: волна, частица, состояние системы, наблюдение системы — это некие абстракции, не имеющие отношения к атомному миру, но необходимые для его понимания. Простые, классические картины дополнительны в том смысле, что для полного описания природы необходимо гармоничное слияние этих двух крайностей, но в рамках привычной логики они могут сосуществовать без противоречий лишь в том случае, если область их применимости взаимно ограничена.
Много размышляя над этими и другими похожими проблемами, Бор пришел к выводу, что это не исключение, а общее правило: всякое истинно глубокое явление природы не может быть определено однозначно с помощью слов нашего языка и требует для своего определения по крайней мере двух взаимоисключающих дополнительных понятий. Это означает, что при условии сохранения нашего языка и привычной логики мышление в форме дополнительности ставит пределы точной формулировке понятий, соответствующих истинно глубоким явлениям природы. Такие определения либо однозначны, но тогда неполны, либо полны, но тогда неоднозначны, поскольку включают в себя дополнительные понятия, несовместимые в рамках обычной логики. К таким понятиям относятся понятия «жизнь», «атомный объект», «физическая система» и даже само понятие «познание природы».
Взаимоисключающие понятия
С давних пор известно, что наука — это лишь один из способов изучить окружающий мир. Другой, дополнительный, способ воплощен в искусстве. Само совместное существование искусства и науки — хорошая иллюстрация принципа дополнительности. Можно полностью уйти в науку или всецело жить искусством — оба эти подхода к жизни одинаково правомерны, хотя взятые по отдельности и неполны. Стержень науки — логика и опыт. Основа искусства — интуиция и прозрение. Но искусство балета требует математической точности, а «…вдохновение в геометрии столь же необходимо, как и в поэзии» Они не противоречат, а дополняют друг друга: истинная наука сродни искусству — точно так же, как настоящее искусство всегда включает в себя элементы науки. В высших своих проявлениях они неразличимы и неразделимы, как свойства «волна — частица» в атоме. Они отражают разные, дополнительные стороны человеческого опыта и лишь взятые вместе дают нам полное представление о мире. Неизвестно, к сожалению, только «соотношение неопределенностей» для сопряженной пары понятий «наука — искусство», а потому и степень ущерба, который мы терпим при одностороннем восприятии жизни.
Конечно, приведенная аналогия, как и всякая аналогия, и неполна и нестрога. Она лишь помогает нам почувствовать единство и противоречивость всей системы человеческих знаний.
ДУАЛИЗМ И НЕОПРЕДЕЛЕННОСТЬ
В волновой оптике давно знали, что ни в какой микроскоп нельзя разглядеть частицу, если ее размеры меньше, чем половина длины волны света, которым она освещена. В этом не видели ничего странного: волны света существуют сами по себе, частица — сама по себе. Но когда выяснилось, что частице тоже можно приписать длину волны, тогда это утверждение волновой оптики превратилось в соотношение неопределенностей: не может частица сама себя локализовать точнее, чем на половине длины своей же волны.
В пору становления квантовой механики даже хорошие физики с горечью шутили, что теперь им приходится по понедельникам, средам и пятницам представлять электрон частицей, а в остальные дни — волной.
Такой способ мышления приводил к множеству парадоксов, от которых мы будем избавлены, если сразу же заставив себя не разделять в электроне свойства «волна — частица». Только после этого соотношение неопределенностей Гейзенберга перестанет быть чем-то странным и превратится в простое следствие корпускулярно-волнового дуализма.
Чтобы убедиться в этом, поставим мысленный эксперимент по измерению импульса р летящей частицы с массой m. Как известно,
р = mv — поэтому нам достаточно измерить скорость v. Для этого нужно отметить ее положения x 1и x 2в моменты времени t 1и t 2и затем вычислить скорость по формуле:
v = (x 2— x 1)/(t 2— t 1) = Δх/Δt.
Как всегда при измерении, мы на частицу воздействуем и тем самым меняем ее скорость. Поэтому, если нам захочется измерить скорость v как можно точнее, мы должны выбирать точки х 1и х 2как можно ближе — перейти к пределу Δx — > 0. В классической физике так и поступают.
Читать дальше