Из нашей далеко не полной схемы видна сложность задачи: необходимо с единой точки зрения (и непротиворечиво) объяснить все эти — очень разные — опыты. Нильс Бор нашел такое объяснение, причем оно оказалось удивительно простым и совершенным по форме.
Это случилось тогда, когда Бору вдруг стало ясно, что три физические идеи: атомы, лучи, электроны — связаны между собой понятием кванта. До сих пор эти идеи развивались независимо. Химия и кинетическая теория материи доказали существование атомов. Электромагнитная теория света Максвелла изучала свойства лучей. Электродинамика Максвелла — Лоренца пыталась осмыслить понятие «электрон».
Атом
Квант действия h, даже после работ Эйнштейна и Милликена, в Европе никто не принимал всерьез, хотя отдельные попытки использовать его были: в 1910 году Артур де Гааз попытался применить соотношение Планка E = hν для определения границ и периодов движения электронов в атоме Томсона; Джон Никльсон в 1912 году пытался использовать идею квантов для анализа спектров Солнца и туманностей, а Вальтер Нернст выдвинул гипотезу о квантовании вращений.
Скептическое отношение к идее квантов лучше всего выразил сам Планк в книге, которую он написал в 1912 году. «Когда подумаешь о полном экспериментальном подтверждении, которое получила электродинамика Максвелла в самых тонких явлениях интерференции, когда подумаешь о невероятных трудностях, которые повлек бы за собой отказ от нее для всей теории электрических и магнитных явлений, то испытываешь какое-то отвращение, когда сразу же разрушаешь эти основы. По этой причине во всем дальнейшем изложении мы оставим в стороне гипотезу квантов света, тем более что ее развитие находится еще в зачаточном состоянии».
В 1912 году Нильс Бор уже работал в Манчестере у Резерфорда. Манчестер отделен от Европы Ла-Маншем, и, вероятно, поэтому в лаборатории Резерфорда к гипотезе квантов относились хотя и осторожно, но без континентального недоверия. Быть может, поэтому, когда Планк писал свою книгу, Нильс Бор уже был твердо убежден в том, что «…электронное строение атома Резерфорда управляется с помощью кванта действия». Но прошел еще год упорных размышлений, прежде чем он сформулировал свои знаменитые «постулаты Бора».
Как он должен был при этом рассуждать?
Когда Александр Македонский увидел перед собой узел Гордия, то просто разрубил его мечом — он был полководец и победитель. Бору пришлось труднее, но поступил он аналогично. Рассуждал он примерно так: по законам механики, чтобы электрон в планетарном атоме Резерфорда не упал на ядро, он должен вокруг него вращаться. Но по законам электродинамики он обязан при этом излучать энергию и в конце концов все равно упасть на ядро. Нужно запретить ему падать на ядро.
— Позвольте, — возражали ему, — как это — запретить? Между электроном и ядром действуют электрические силы?
— Да, — отвечал Бор.
— Они описываются уравнениями Максвелла?
— Да.
— И даже масса m и заряд е электрона определены из электрических измерений?.
— Да.
— Значит, движение электрона в атоме также должно подчиняться электродинамике Максвелла?
— Нет!
Согласитесь, что такой способ ведения спора может рассердить даже очень спокойного человека. «Но ведь атом все-таки устойчив! — без конца повторял Бор в ответ на все возражения. — И мы не знаем более простой причины этой устойчивости, кроме той, что она есть».
В поисках разумного основания для этого несомненного факта Бор наткнулся на книгу Иоганна Штарка «Принципы атомной динамики» и там впервые увидел формулы Бальмера и Ридберга.
«Мне сразу все стало ясно, — вспоминает Бор. — И после многочисленных попыток использовать квантовые идеи в более строгой форме ранней весной 1913 года мне пришло в голову, что ключом к решению проблемы атомной устойчивости являются изумительно простые законы, определяющие оптический спектр элементов».
Теперь он мог сформулировать свои знаменитые постулаты:
1-й постулат — о стационарных состояниях. В атоме существуют орбиты, вращаясь по которым электрон не излучает.
2-й постулат — о квантовых скачках. Излучение происходит только при перескоке электрона с одной стационарной орбиты на другую. При этом частота излучения ν определяется гипотезой Эйнштейна о квантах света ΔЕ — hν, где ΔЕ — разность энергий уровней, между которыми происходит переход.
Читать дальше